At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's find the limit as \( x \) approaches 1 for the expression \(\frac{x^7 - 1}{x^{20} - 1}\):
[tex]\[ \lim_{x \to 1} \frac{x^7 - 1}{x^{20} - 1} \][/tex]
We'll work through this step-by-step.
### Step 1: Recognize Indeterminate Form
When we substitute \( x = 1 \) directly into the expression, both the numerator and denominator become zero:
[tex]\[ x^7 - 1 = 1^7 - 1 = 0 \][/tex]
[tex]\[ x^{20} - 1 = 1^{20} - 1 = 0 \][/tex]
Hence, we have a \(\frac{0}{0}\) indeterminate form, and we need to apply a method to resolve this.
### Step 2: Apply L'Hôpital's Rule
L'Hôpital's Rule states that if we have a \(\frac{0}{0}\) indeterminate form, we can take the derivatives of the numerator and the denominator:
[tex]\[ \lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{f'(x)}{g'(x)} \][/tex]
In this case:
[tex]\[ f(x) = x^7 - 1 \][/tex]
[tex]\[ g(x) = x^{20} - 1 \][/tex]
We'll differentiate both functions with respect to \( x \):
[tex]\[ f'(x) = \frac{d}{dx}(x^7 - 1) = 7x^6 \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x^{20} - 1) = 20x^{19} \][/tex]
### Step 3: Substitute the Derivatives
Now we substitute the derivatives back into the limit:
[tex]\[ \lim_{x \to 1} \frac{7x^6}{20x^{19}} \][/tex]
### Step 4: Simplify the Expression
We can simplify this new expression:
[tex]\[ \lim_{x \to 1} \frac{7x^6}{20x^{19}} = \lim_{x \to 1} \frac{7}{20} x^{6-19} = \lim_{x \to 1} \frac{7}{20} x^{-13} \][/tex]
### Step 5: Evaluate the Limit
Now, we evaluate the limit as \( x \) approaches 1:
[tex]\[ \frac{7}{20} \cdot 1^{-13} = \frac{7}{20} \][/tex]
(Note that \( 1^{-13} = 1 \))
### Conclusion
So the limit is:
[tex]\[ \lim_{x \to 1} \frac{x^7 - 1}{x^{20} - 1} = \frac{7}{20} \][/tex]
And that's our final answer.
[tex]\[ \lim_{x \to 1} \frac{x^7 - 1}{x^{20} - 1} \][/tex]
We'll work through this step-by-step.
### Step 1: Recognize Indeterminate Form
When we substitute \( x = 1 \) directly into the expression, both the numerator and denominator become zero:
[tex]\[ x^7 - 1 = 1^7 - 1 = 0 \][/tex]
[tex]\[ x^{20} - 1 = 1^{20} - 1 = 0 \][/tex]
Hence, we have a \(\frac{0}{0}\) indeterminate form, and we need to apply a method to resolve this.
### Step 2: Apply L'Hôpital's Rule
L'Hôpital's Rule states that if we have a \(\frac{0}{0}\) indeterminate form, we can take the derivatives of the numerator and the denominator:
[tex]\[ \lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{f'(x)}{g'(x)} \][/tex]
In this case:
[tex]\[ f(x) = x^7 - 1 \][/tex]
[tex]\[ g(x) = x^{20} - 1 \][/tex]
We'll differentiate both functions with respect to \( x \):
[tex]\[ f'(x) = \frac{d}{dx}(x^7 - 1) = 7x^6 \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x^{20} - 1) = 20x^{19} \][/tex]
### Step 3: Substitute the Derivatives
Now we substitute the derivatives back into the limit:
[tex]\[ \lim_{x \to 1} \frac{7x^6}{20x^{19}} \][/tex]
### Step 4: Simplify the Expression
We can simplify this new expression:
[tex]\[ \lim_{x \to 1} \frac{7x^6}{20x^{19}} = \lim_{x \to 1} \frac{7}{20} x^{6-19} = \lim_{x \to 1} \frac{7}{20} x^{-13} \][/tex]
### Step 5: Evaluate the Limit
Now, we evaluate the limit as \( x \) approaches 1:
[tex]\[ \frac{7}{20} \cdot 1^{-13} = \frac{7}{20} \][/tex]
(Note that \( 1^{-13} = 1 \))
### Conclusion
So the limit is:
[tex]\[ \lim_{x \to 1} \frac{x^7 - 1}{x^{20} - 1} = \frac{7}{20} \][/tex]
And that's our final answer.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.