Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's find the base for an exponential function that models a 15% decay.
When dealing with exponential decay, the general form of the exponential function is:
[tex]\[ y = \left( b \right)^{\frac{t}{12}} \][/tex]
where \( b \) is the base we need to find, and \( t \) represents time.
1. Understanding the decay rate: A 15% decay implies that each unit time period, the quantity reduces by 15%. This means after one time period, 85% (which is \(100\% - 15\% = 85\%\) or \(0.85\) as a decimal) of the original amount remains.
2. Relating decay rate to base: The base \( b \) corresponds to the fraction of the quantity that remains after each unit time period. For a 15% decay per unit time period, the remaining portion is \( 0.85 \).
3. Exponent time frame adjustment: Since we are considering decay over a period of \( \frac{t}{12} \), and we want to find the equivalent base that describes decay each month, we need the base \( b \) such that:
[tex]\[ b = 0.85 \][/tex]
So, the base that models a 15% decay in the exponential function \( y = \left( b \right)^{\frac{t}{12}} \) is:
[tex]\[ b = 0.85 \][/tex]
Therefore, the function can be written as:
[tex]\[ y = (0.85)^{\frac{t}{12}} \][/tex]
So, the value that should be placed in the blank to model a 15% decay is [tex]\( \boxed{0.85} \)[/tex].
When dealing with exponential decay, the general form of the exponential function is:
[tex]\[ y = \left( b \right)^{\frac{t}{12}} \][/tex]
where \( b \) is the base we need to find, and \( t \) represents time.
1. Understanding the decay rate: A 15% decay implies that each unit time period, the quantity reduces by 15%. This means after one time period, 85% (which is \(100\% - 15\% = 85\%\) or \(0.85\) as a decimal) of the original amount remains.
2. Relating decay rate to base: The base \( b \) corresponds to the fraction of the quantity that remains after each unit time period. For a 15% decay per unit time period, the remaining portion is \( 0.85 \).
3. Exponent time frame adjustment: Since we are considering decay over a period of \( \frac{t}{12} \), and we want to find the equivalent base that describes decay each month, we need the base \( b \) such that:
[tex]\[ b = 0.85 \][/tex]
So, the base that models a 15% decay in the exponential function \( y = \left( b \right)^{\frac{t}{12}} \) is:
[tex]\[ b = 0.85 \][/tex]
Therefore, the function can be written as:
[tex]\[ y = (0.85)^{\frac{t}{12}} \][/tex]
So, the value that should be placed in the blank to model a 15% decay is [tex]\( \boxed{0.85} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.