Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which value of \(c\) makes the expression \(8x + cy\) completely factored, we need to identify a \(c\) such that the expression can be written as a product of simpler expressions.
Consider the expression \(8x + cy\). For this expression to be completely factored, \(c\) should allow us to factor out a common term from both \(8x\) and \(cy\).
We know that \(8x\) can be factored as \(8 \cdot x\). Thus, \(cy\) must be able to similarly factor into \(8 \cdot (\text{some term}) \cdot y\) for a common factor to be present.
To achieve this, we need \(cy = 8(\text{some integer})\). This implies that \(c\) must be a multiple of 8 to factor out the 8 from the expression.
Given the values \(2\), \(7\), \(12\), and \(16\):
- When \(c = 2\), \(8x + 2y\) cannot be factored to include an 8.
- When \(c = 7\), \(8x + 7y\) cannot be factored to include an 8.
- When \(c = 12\), \(8x + 12y\) cannot be factored to include an 8.
- When \(c = 16\), the expression becomes \(8x + 16y\), and it can be factored out as \(8(x + 2y)\) because both \(8x\) and \(16y\) have a common factor of 8.
Therefore, the value of [tex]\(c\)[/tex] which allows [tex]\(8x + cy\)[/tex] to be completely factored is [tex]\( \boxed{16} \)[/tex].
Consider the expression \(8x + cy\). For this expression to be completely factored, \(c\) should allow us to factor out a common term from both \(8x\) and \(cy\).
We know that \(8x\) can be factored as \(8 \cdot x\). Thus, \(cy\) must be able to similarly factor into \(8 \cdot (\text{some term}) \cdot y\) for a common factor to be present.
To achieve this, we need \(cy = 8(\text{some integer})\). This implies that \(c\) must be a multiple of 8 to factor out the 8 from the expression.
Given the values \(2\), \(7\), \(12\), and \(16\):
- When \(c = 2\), \(8x + 2y\) cannot be factored to include an 8.
- When \(c = 7\), \(8x + 7y\) cannot be factored to include an 8.
- When \(c = 12\), \(8x + 12y\) cannot be factored to include an 8.
- When \(c = 16\), the expression becomes \(8x + 16y\), and it can be factored out as \(8(x + 2y)\) because both \(8x\) and \(16y\) have a common factor of 8.
Therefore, the value of [tex]\(c\)[/tex] which allows [tex]\(8x + cy\)[/tex] to be completely factored is [tex]\( \boxed{16} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.