Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's evaluate the polynomial \(-x^3 + 4x^2 - 3x + 12\) at \(x = -2\).
1. Start by substituting \(x = -2\) into the polynomial:
[tex]\[ -(-2)^3 + 4(-2)^2 - 3(-2) + 12 \][/tex]
2. Calculate \((-2)^3\):
[tex]\[ (-2)^3 = -8 \][/tex]
So, \(-(-2)^3\) becomes:
[tex]\[ -(-8) = 8 \][/tex]
3. Next, calculate \((-2)^2\):
[tex]\[ (-2)^2 = 4 \][/tex]
So, \(4(-2)^2\) becomes:
[tex]\[ 4 \cdot 4 = 16 \][/tex]
4. Then calculate \(-3(-2)\):
[tex]\[ -3(-2) = 6 \][/tex]
5. Finally, combine all the terms together and add the constant term \(12\):
[tex]\[ 8 + 16 + 6 + 12 \][/tex]
6. Sum these values step-by-step:
[tex]\[ 8 + 16 = 24 \][/tex]
[tex]\[ 24 + 6 = 30 \][/tex]
[tex]\[ 30 + 12 = 42 \][/tex]
So, the value of the polynomial \(-x^3 + 4x^2 - 3x + 12\) at \(x = -2\) is:
[tex]\[ 42 \][/tex]
1. Start by substituting \(x = -2\) into the polynomial:
[tex]\[ -(-2)^3 + 4(-2)^2 - 3(-2) + 12 \][/tex]
2. Calculate \((-2)^3\):
[tex]\[ (-2)^3 = -8 \][/tex]
So, \(-(-2)^3\) becomes:
[tex]\[ -(-8) = 8 \][/tex]
3. Next, calculate \((-2)^2\):
[tex]\[ (-2)^2 = 4 \][/tex]
So, \(4(-2)^2\) becomes:
[tex]\[ 4 \cdot 4 = 16 \][/tex]
4. Then calculate \(-3(-2)\):
[tex]\[ -3(-2) = 6 \][/tex]
5. Finally, combine all the terms together and add the constant term \(12\):
[tex]\[ 8 + 16 + 6 + 12 \][/tex]
6. Sum these values step-by-step:
[tex]\[ 8 + 16 = 24 \][/tex]
[tex]\[ 24 + 6 = 30 \][/tex]
[tex]\[ 30 + 12 = 42 \][/tex]
So, the value of the polynomial \(-x^3 + 4x^2 - 3x + 12\) at \(x = -2\) is:
[tex]\[ 42 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.