Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which one of the following would weigh the most?

A. 1 mole of [tex]CO_2[/tex]
B. 1 mole of [tex]H_2O[/tex]
C. 1 mole of [tex]NH_3[/tex]
D. 1 mole of [tex]NO_2[/tex]

---

The volume occupied by [tex]7.1 \, \text{g}[/tex] of chlorine gas at STP is:

A. [tex]22.4 \, \text{L}[/tex]
B. [tex]2.24 \, \text{L}[/tex]
C. [tex]11.2 \, \text{L}[/tex]
D. [tex]1.12 \, \text{L}[/tex]


Sagot :

Certainly! Let's tackle each part of the question one at a time.

### Part i: Determining the heaviest molecule

To find out which one weighs the most, we will calculate the molar mass (molecular weight) of each substance (CO₂, H₂O, NH₃, NO₂). The molar mass of a molecule is the sum of the atomic masses of all the atoms in the molecule, given in grams per mole (g/mol).

1. CO₂ (Carbon dioxide):
- Carbon (C): atomic mass ≈ 12 g/mol
- Oxygen (O): atomic mass ≈ 16 g/mol
- Molar mass of CO₂ = 12 + 2 16 = 12 + 32 = 44 g/mol

2. H₂O (Water):
- Hydrogen (H): atomic mass ≈ 1 g/mol
- Oxygen (O): atomic mass ≈ 16 g/mol
- Molar mass of H₂O = 2
1 + 16 = 2 + 16 = 18 g/mol

3. NH₃ (Ammonia):
- Nitrogen (N): atomic mass ≈ 14 g/mol
- Hydrogen (H): atomic mass ≈ 1 g/mol
- Molar mass of NH₃ = 14 + 3 1 = 14 + 3 = 17 g/mol

4. NO₂ (Nitrogen dioxide):
- Nitrogen (N): atomic mass ≈ 14 g/mol
- Oxygen (O): atomic mass ≈ 16 g/mol
- Molar mass of NO₂ = 14 + 2
16 = 14 + 32 = 46 g/mol

Now, let’s compare the molar masses:
- CO₂: 44 g/mol
- H₂O: 18 g/mol
- NH₃: 17 g/mol
- NO₂: 46 g/mol

The heaviest molecule is NO₂ with a molar mass of 46 g/mol.

So, the answer is:
D. 1 mole of \( NO_2 \)

### Part ii: Volume occupied by 7.1 grams of chlorine gas at STP

At STP (Standard Temperature and Pressure), 1 mole of any ideal gas occupies 22.4 liters.
First, we need to find the number of moles of chlorine gas (Cl₂) in 7.1 grams.

1. Chlorine gas (Cl₂):
- Chlorine (Cl): atomic mass ≈ 35.5 g/mol
- Molar mass of Cl₂ = 2 * 35.5 = 71 g/mol

To calculate the number of moles:
[tex]\[ \text{Number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{7.1 \text{ g}}{71 \text{ g/mol}} = 0.1 \text{ moles} \][/tex]

Now, we use the fact that 1 mole of gas occupies 22.4 liters at STP:
[tex]\[ \text{Volume of 0.1 moles} = 0.1 \times 22.4 \text{ L} = 2.24 \text{ L} \][/tex]

So, the volume occupied by 7.1 g of chlorine gas at STP is:
B. [tex]\( 2.24 \, \text{L} \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.