At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Rewrite the equation \(x + 2y = 16\) in slope-intercept form. What is the slope of the line?

A. \(-2\)
B. \(-1\)
C. [tex]\(-0.5\)[/tex]


Sagot :

To determine the slope of the line given by the equation \( x + 2y = 16 \), we need to convert this equation into the slope-intercept form, \( y = mx + b \), where \( m \) represents the slope.

Here are the steps to convert the equation \( x + 2y = 16 \) into slope-intercept form:

1. Start with the provided standard form equation:
[tex]\[ x + 2y = 16 \][/tex]

2. Isolate the \( y \)-term by subtracting \( x \) from both sides:
[tex]\[ 2y = -x + 16 \][/tex]

3. Solve for \( y \) by dividing each term by 2:
[tex]\[ y = \frac{-x}{2} + \frac{16}{2} \][/tex]

4. Simplify the fraction:
[tex]\[ y = -\frac{1}{2}x + 8 \][/tex]

Now the equation is in slope-intercept form \( y = mx + b \).

From this form, we can see that the coefficient of \( x \) (which is \( m \)) is the slope. Therefore, the slope ( \( m \) ) is:

[tex]\[ -0.5 \][/tex]

So, the slope of the line given by the equation [tex]\( x + 2y = 16 \)[/tex] is [tex]\( -0.5 \)[/tex].