Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To rewrite the function \( g(x) = -16x + x^2 \) in vertex form, let's go through the process step-by-step:
### Step 1: Write the function in standard form
We start with the given function:
[tex]\[ g(x) = -16x + x^2 \][/tex]
In standard quadratic form, it should be written as:
[tex]\[ g(x) = x^2 - 16x \][/tex]
### Step 2: Form a perfect square trinomial by adding and subtracting \(\left(\frac{b}{2}\right)^2\)
Identify the \(b\) term:
[tex]\[ b = -16 \][/tex]
Calculate \(\left(\frac{b}{2}\right)^2\):
[tex]\[ \left(\frac{-16}{2}\right)^2 = 64 \][/tex]
Add and subtract \(\left(\frac{b}{2}\right)^2\) inside the function:
[tex]\[ g(x) = x^2 - 16x + 64 - 64 \][/tex]
[tex]\[ g(x) = \left(x^2 - 16x + 64\right) - 64 \][/tex]
### Step 3: Write the trinomial as a binomial squared
Rewrite the perfect square trinomial as a binomial squared:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
### Step 4: Write the function in vertex form, if needed
The vertex form of a quadratic function is
[tex]\[ g(x) = a(x - h)^2 + k \][/tex]
where \((h, k)\) is the vertex of the parabola.
Thus, the function in vertex form is:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
In conclusion, the function \( g(x) = -16x + x^2 \) can be written in vertex form as:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
### Step 1: Write the function in standard form
We start with the given function:
[tex]\[ g(x) = -16x + x^2 \][/tex]
In standard quadratic form, it should be written as:
[tex]\[ g(x) = x^2 - 16x \][/tex]
### Step 2: Form a perfect square trinomial by adding and subtracting \(\left(\frac{b}{2}\right)^2\)
Identify the \(b\) term:
[tex]\[ b = -16 \][/tex]
Calculate \(\left(\frac{b}{2}\right)^2\):
[tex]\[ \left(\frac{-16}{2}\right)^2 = 64 \][/tex]
Add and subtract \(\left(\frac{b}{2}\right)^2\) inside the function:
[tex]\[ g(x) = x^2 - 16x + 64 - 64 \][/tex]
[tex]\[ g(x) = \left(x^2 - 16x + 64\right) - 64 \][/tex]
### Step 3: Write the trinomial as a binomial squared
Rewrite the perfect square trinomial as a binomial squared:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
### Step 4: Write the function in vertex form, if needed
The vertex form of a quadratic function is
[tex]\[ g(x) = a(x - h)^2 + k \][/tex]
where \((h, k)\) is the vertex of the parabola.
Thus, the function in vertex form is:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
In conclusion, the function \( g(x) = -16x + x^2 \) can be written in vertex form as:
[tex]\[ g(x) = (x - 8)^2 - 64 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.