Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve this step-by-step.
Given three numbers in the ratio 4:5:6. We will denote these numbers as \(4x\), \(5x\), and \(6x\) respectively, where \(x\) is a common multiplier.
1. Sum of the Numbers:
According to the problem, the sum of these numbers is 200.
[tex]\[ 4x + 5x + 6x = 200 \][/tex]
Simplifying this,
[tex]\[ 15x = 200 \][/tex]
2. Express x:
Solving for \(x\),
[tex]\[ x = \frac{200}{15} = \frac{40}{3} \][/tex]
3. Find Each Number:
Now, substitute the value of \(x\) back into each expression to find the actual numbers.
- The first number (smallest) is:
[tex]\[ 4x = 4 \times \frac{40}{3} = \frac{160}{3} \][/tex]
- The second number (middle) is:
[tex]\[ 5x = 5 \times \frac{40}{3} = \frac{200}{3} \][/tex]
- The third number (largest) is:
[tex]\[ 6x = 6 \times \frac{40}{3} = 80 \][/tex]
4. Verification:
- Sum of the numbers:
[tex]\[ \frac{160}{3} + \frac{200}{3} + 80 \][/tex]
First, convert 80 to a fraction over 3 to add easily:
[tex]\[ 80 = \frac{240}{3} \][/tex]
Now adding all together:
[tex]\[ \frac{160}{3} + \frac{200}{3} + \frac{240}{3} = \frac{600}{3} = 200 \][/tex]
- Check the condition that the sum of the largest and smallest equals twice the middle number:
[tex]\[ \frac{160}{3} + 80 = 2 \left( \frac{200}{3} \right) \][/tex]
Convert 80 to fraction form:
[tex]\[ 80 = \frac{240}{3} \][/tex]
So,
[tex]\[ \frac{160}{3} + \frac{240}{3} = \frac{400}{3} \][/tex]
And,
[tex]\[ 2 \left( \frac{200}{3} \right) = \frac{400}{3} \][/tex]
Both sides are equal, confirming the condition.
Thus, the three numbers are [tex]\(\frac{160}{3}\)[/tex], [tex]\(\frac{200}{3}\)[/tex], and [tex]\(80\)[/tex].
Given three numbers in the ratio 4:5:6. We will denote these numbers as \(4x\), \(5x\), and \(6x\) respectively, where \(x\) is a common multiplier.
1. Sum of the Numbers:
According to the problem, the sum of these numbers is 200.
[tex]\[ 4x + 5x + 6x = 200 \][/tex]
Simplifying this,
[tex]\[ 15x = 200 \][/tex]
2. Express x:
Solving for \(x\),
[tex]\[ x = \frac{200}{15} = \frac{40}{3} \][/tex]
3. Find Each Number:
Now, substitute the value of \(x\) back into each expression to find the actual numbers.
- The first number (smallest) is:
[tex]\[ 4x = 4 \times \frac{40}{3} = \frac{160}{3} \][/tex]
- The second number (middle) is:
[tex]\[ 5x = 5 \times \frac{40}{3} = \frac{200}{3} \][/tex]
- The third number (largest) is:
[tex]\[ 6x = 6 \times \frac{40}{3} = 80 \][/tex]
4. Verification:
- Sum of the numbers:
[tex]\[ \frac{160}{3} + \frac{200}{3} + 80 \][/tex]
First, convert 80 to a fraction over 3 to add easily:
[tex]\[ 80 = \frac{240}{3} \][/tex]
Now adding all together:
[tex]\[ \frac{160}{3} + \frac{200}{3} + \frac{240}{3} = \frac{600}{3} = 200 \][/tex]
- Check the condition that the sum of the largest and smallest equals twice the middle number:
[tex]\[ \frac{160}{3} + 80 = 2 \left( \frac{200}{3} \right) \][/tex]
Convert 80 to fraction form:
[tex]\[ 80 = \frac{240}{3} \][/tex]
So,
[tex]\[ \frac{160}{3} + \frac{240}{3} = \frac{400}{3} \][/tex]
And,
[tex]\[ 2 \left( \frac{200}{3} \right) = \frac{400}{3} \][/tex]
Both sides are equal, confirming the condition.
Thus, the three numbers are [tex]\(\frac{160}{3}\)[/tex], [tex]\(\frac{200}{3}\)[/tex], and [tex]\(80\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.