At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which function represents a quadratic function, we first need to understand the definition of a quadratic function. A quadratic function is a polynomial of degree 2, meaning the highest power of \(x\) is \(x^2\).
Let's examine each of the given functions:
1. \( f(x) = 2x^3 + 2x^2 - 4 \)
- The highest power of \(x\) in this function is \(x^3\), which means it is a polynomial of degree 3. Therefore, it is not a quadratic function.
2. \( f(x) = -7x^2 - x + 2 \)
- The highest power of \(x\) in this function is \(x^2\), which means it is a polynomial of degree 2. Therefore, it is a quadratic function.
3. \( f(x) = -3x + 2 \)
- The highest power of \(x\) in this function is \(x\), which means it is a polynomial of degree 1. Therefore, it is not a quadratic function.
4. \( f(x) = 0x^2 + 3x - 3 \)
- Although this function contains an \(x^2\) term, it has a coefficient of 0, so the highest power of \(x\) that actually affects the function is \(x\). Therefore, it is effectively a polynomial of degree 1 and is not a quadratic function.
Summarizing our findings, the function that represents a quadratic function is:
[tex]\[ f(x) = -7x^2 - x + 2 \][/tex]
Thus, the function [tex]\( f(x) = -7x^2 - x + 2 \)[/tex] is the quadratic function among the given options.
Let's examine each of the given functions:
1. \( f(x) = 2x^3 + 2x^2 - 4 \)
- The highest power of \(x\) in this function is \(x^3\), which means it is a polynomial of degree 3. Therefore, it is not a quadratic function.
2. \( f(x) = -7x^2 - x + 2 \)
- The highest power of \(x\) in this function is \(x^2\), which means it is a polynomial of degree 2. Therefore, it is a quadratic function.
3. \( f(x) = -3x + 2 \)
- The highest power of \(x\) in this function is \(x\), which means it is a polynomial of degree 1. Therefore, it is not a quadratic function.
4. \( f(x) = 0x^2 + 3x - 3 \)
- Although this function contains an \(x^2\) term, it has a coefficient of 0, so the highest power of \(x\) that actually affects the function is \(x\). Therefore, it is effectively a polynomial of degree 1 and is not a quadratic function.
Summarizing our findings, the function that represents a quadratic function is:
[tex]\[ f(x) = -7x^2 - x + 2 \][/tex]
Thus, the function [tex]\( f(x) = -7x^2 - x + 2 \)[/tex] is the quadratic function among the given options.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.