Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given equations represent linear relationships, we need to examine each equation and see if it can be written in the form of a linear equation, which is typically given by \(Ax + By = C\), where \(A\), \(B\), and \(C\) are constants, and \(x\) and \(y\) are variables.
Let's analyze each equation one by one:
1. Equation: \(5 + 2y = 13\)
- Rearrange to isolate \(y\): \(2y = 13 - 5 = 8\)
- Solve for \(y\): \(y = \frac{8}{2} = 4\)
- This can be written as \(y = 4\), which is a linear equation.
2. Equation: \(y = \frac{1}{2} x^2 + 7\)
- This equation includes the term \(x^2\), which is a quadratic term.
- Since it involves \(x^2\), it is not a linear equation.
3. Equation: \(y - 5 = 2(x - 1)\)
- Distribute and rearrange: \(y - 5 = 2x - 2\)
- Solve for \(y\): \(y = 2x - 2 + 5 = 2x + 3\)
- This can be written as \(y = 2x + 3\), which is a linear equation.
4. Equation: \(\frac{y}{2} = x + 7\)
- Multiply both sides by 2 to isolate \(y\): \(y = 2(x + 7) = 2x + 14\)
- This can be written as \(y = 2x + 14\), which is a linear equation.
5. Equation: \(x = -4\)
- This represents a vertical line where \(x\) is always \(-4\), independent of \(y\).
- In the \(xy\)-plane, this is still a linear relationship, though it's a special case where it doesn't explicitly involve \(y\), but it is a valid linear equation.
Summary of the Analysis:
- Equation 1 \(5 + 2y = 13\) \( \Rightarrow \) Linear
- Equation 2 \(y = \frac{1}{2} x^2 + 7\) \( \Rightarrow \) Not Linear
- Equation 3 \(y - 5 = 2(x - 1)\) \( \Rightarrow \) Linear
- Equation 4 \(\frac{y}{2} = x + 7\) \( \Rightarrow \) Linear
- Equation 5 \(x = -4\) \( \Rightarrow \) Linear
Therefore, the equations that represent linear relationships are:
- \(5 + 2y = 13\)
- \(y - 5 = 2(x - 1)\)
- \(\frac{y}{2} = x + 7\)
- [tex]\(x = -4\)[/tex]
Let's analyze each equation one by one:
1. Equation: \(5 + 2y = 13\)
- Rearrange to isolate \(y\): \(2y = 13 - 5 = 8\)
- Solve for \(y\): \(y = \frac{8}{2} = 4\)
- This can be written as \(y = 4\), which is a linear equation.
2. Equation: \(y = \frac{1}{2} x^2 + 7\)
- This equation includes the term \(x^2\), which is a quadratic term.
- Since it involves \(x^2\), it is not a linear equation.
3. Equation: \(y - 5 = 2(x - 1)\)
- Distribute and rearrange: \(y - 5 = 2x - 2\)
- Solve for \(y\): \(y = 2x - 2 + 5 = 2x + 3\)
- This can be written as \(y = 2x + 3\), which is a linear equation.
4. Equation: \(\frac{y}{2} = x + 7\)
- Multiply both sides by 2 to isolate \(y\): \(y = 2(x + 7) = 2x + 14\)
- This can be written as \(y = 2x + 14\), which is a linear equation.
5. Equation: \(x = -4\)
- This represents a vertical line where \(x\) is always \(-4\), independent of \(y\).
- In the \(xy\)-plane, this is still a linear relationship, though it's a special case where it doesn't explicitly involve \(y\), but it is a valid linear equation.
Summary of the Analysis:
- Equation 1 \(5 + 2y = 13\) \( \Rightarrow \) Linear
- Equation 2 \(y = \frac{1}{2} x^2 + 7\) \( \Rightarrow \) Not Linear
- Equation 3 \(y - 5 = 2(x - 1)\) \( \Rightarrow \) Linear
- Equation 4 \(\frac{y}{2} = x + 7\) \( \Rightarrow \) Linear
- Equation 5 \(x = -4\) \( \Rightarrow \) Linear
Therefore, the equations that represent linear relationships are:
- \(5 + 2y = 13\)
- \(y - 5 = 2(x - 1)\)
- \(\frac{y}{2} = x + 7\)
- [tex]\(x = -4\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.