Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given problem, we will analyze the transformations applied to the original function \( f(x) = x^3 \) to correctly determine the graph of the function \( y = f(x+3) - 9 \).
### Step-by-Step Solution:
1. Understanding the function transformation:
We begin with the original function \( f(x) = x^3 \).
2. Horizontal Translation:
The expression \( f(x+3) \) applies a horizontal shift to the function \( f(x) \). Specifically, adding a constant inside the function argument (i.e., replacing \( x \) with \( x + 3 \)) results in a shift to the left.
- The graph of \( f(x+3) \) is the graph of \( f(x) \) shifted 3 units to the left.
3. Vertical Translation:
Next, we consider the expression \( -9 \) which is subtracted from the function. Subtracting a constant outside the function argument (i.e., \( f(x+3) - 9 \)) results in a vertical shift.
- The graph of \( f(x+3) - 9 \) is the graph of \( f(x+3) \) shifted 9 units downwards.
4. Combining Transformations:
The resulting function \( y = f(x+3) - 9 \) involves:
- A translation 3 units to the left due to the \( (x+3) \) term.
- A translation 9 units down due to the \( -9 \) term.
Thus, given these transformations, the correct description of the graph transformation is:
C. It is the graph of [tex]\( f \)[/tex] translated 9 units down and 3 units to the left.
### Step-by-Step Solution:
1. Understanding the function transformation:
We begin with the original function \( f(x) = x^3 \).
2. Horizontal Translation:
The expression \( f(x+3) \) applies a horizontal shift to the function \( f(x) \). Specifically, adding a constant inside the function argument (i.e., replacing \( x \) with \( x + 3 \)) results in a shift to the left.
- The graph of \( f(x+3) \) is the graph of \( f(x) \) shifted 3 units to the left.
3. Vertical Translation:
Next, we consider the expression \( -9 \) which is subtracted from the function. Subtracting a constant outside the function argument (i.e., \( f(x+3) - 9 \)) results in a vertical shift.
- The graph of \( f(x+3) - 9 \) is the graph of \( f(x+3) \) shifted 9 units downwards.
4. Combining Transformations:
The resulting function \( y = f(x+3) - 9 \) involves:
- A translation 3 units to the left due to the \( (x+3) \) term.
- A translation 9 units down due to the \( -9 \) term.
Thus, given these transformations, the correct description of the graph transformation is:
C. It is the graph of [tex]\( f \)[/tex] translated 9 units down and 3 units to the left.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.