Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine \(\cos(\theta)\) given that \(\sin(\theta) = -\frac{1}{3}\) and \(\pi < \theta < \frac{3\pi}{2}\), follow these steps:
1. Identify the Quadrant:
Since \(\pi < \theta < \frac{3\pi}{2}\), the angle \(\theta\) is in the third quadrant. In the third quadrant, sine is negative and cosine is also negative.
2. Use the Pythagorean Identity:
The Pythagorean identity states:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
3. Substitute the Known Sine Value:
Given \(\sin(\theta) = -\frac{1}{3}\), first find \(\sin^2(\theta)\):
[tex]\[ \sin^2(\theta) = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
4. Express \(\cos^2(\theta)\) in Terms of Known Values:
We use the identity \(\sin^2(\theta) + \cos^2(\theta) = 1\) to solve for \(\cos^2(\theta)\):
[tex]\[ \cos^2(\theta) = 1 - \sin^2(\theta) \][/tex]
Substituting \(\sin^2(\theta)\):
[tex]\[ \cos^2(\theta) = 1 - \frac{1}{9} \][/tex]
Simplify the expression:
[tex]\[ \cos^2(\theta) = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \][/tex]
5. Determine \(\cos(\theta)\):
To find \(\cos(\theta)\), take the square root of both sides. Since \(\cos(\theta)\) is in the third quadrant and must be negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{8}{9}} = -\frac{\sqrt{8}}{3} = -\frac{2\sqrt{2}}{3} \][/tex]
Therefore, the value of \(\cos(\theta)\) is:
[tex]\[ \boxed{-\frac{2\sqrt{2}}{3}} \][/tex]
1. Identify the Quadrant:
Since \(\pi < \theta < \frac{3\pi}{2}\), the angle \(\theta\) is in the third quadrant. In the third quadrant, sine is negative and cosine is also negative.
2. Use the Pythagorean Identity:
The Pythagorean identity states:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
3. Substitute the Known Sine Value:
Given \(\sin(\theta) = -\frac{1}{3}\), first find \(\sin^2(\theta)\):
[tex]\[ \sin^2(\theta) = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
4. Express \(\cos^2(\theta)\) in Terms of Known Values:
We use the identity \(\sin^2(\theta) + \cos^2(\theta) = 1\) to solve for \(\cos^2(\theta)\):
[tex]\[ \cos^2(\theta) = 1 - \sin^2(\theta) \][/tex]
Substituting \(\sin^2(\theta)\):
[tex]\[ \cos^2(\theta) = 1 - \frac{1}{9} \][/tex]
Simplify the expression:
[tex]\[ \cos^2(\theta) = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \][/tex]
5. Determine \(\cos(\theta)\):
To find \(\cos(\theta)\), take the square root of both sides. Since \(\cos(\theta)\) is in the third quadrant and must be negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{8}{9}} = -\frac{\sqrt{8}}{3} = -\frac{2\sqrt{2}}{3} \][/tex]
Therefore, the value of \(\cos(\theta)\) is:
[tex]\[ \boxed{-\frac{2\sqrt{2}}{3}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.