Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which ordered pair makes both inequalities true, we need to check each pair against the given inequalities:
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.