Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which ordered pair makes both inequalities true, we need to check each pair against the given inequalities:
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.