Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which ordered pair makes both inequalities true, we need to check each pair against the given inequalities:
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
[tex]\[ \begin{cases} y > -3x + 3 \\ y \geq 2x - 2 \end{cases} \][/tex]
Let's test each pair one by one:
1. Pair \((1, 0)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > -3 + 3 \rightarrow 0 > 0 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 2 - 2 \rightarrow 0 \geq 0 \][/tex]
This is true.
Since the first inequality is false, \((1, 0)\) does not satisfy both inequalities.
2. Pair \((-1, 1)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 3 + 3 \rightarrow 1 > 6 \][/tex]
This is false.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -2 - 2 \rightarrow 1 \geq -4 \][/tex]
This is true.
Since the first inequality is false, \((-1, 1)\) does not satisfy both inequalities.
3. Pair \((2, 2)\):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -6 + 3 \rightarrow 2 > -3 \][/tex]
This is true.
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 4 - 2 \rightarrow 2 \geq 2 \][/tex]
This is true.
Since both inequalities are true, \((2, 2)\) satisfies both.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] is the one that makes both inequalities true.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.