Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the expression \(\sqrt[8]{a^5 b} - \sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\), we can follow these steps:
1. Convert Radicals to Exponents: Start by expressing the radicals using fractional exponents.
- \(\sqrt[8]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{8}}\).
- \(\sqrt[7]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{7}}\).
2. Rewrite the Expression:
- The given expression can be rewritten as \((a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}}\).
3. Simplify the Product of Exponents: Using the property of exponents that \(x^m \cdot x^n = x^{m+n}\):
- \(\sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\) becomes \((a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}} = (a^5 b)^{\frac{1}{7} + \frac{1}{8}}\).
4. Sum the Exponents:
- Compute \(\frac{1}{7} + \frac{1}{8}\).
- The value \(\frac{1}{7} + \frac{1}{8}\) can be calculated as:
[tex]\[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \][/tex]
5. Rewrite the Expression:
- The expression thus simplifies to:
[tex]\[ (a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{15}{56}} \][/tex]
6. Convert the Exponents Back to Original Form:
- \((a^5 b)^{\frac{1}{8}} \) remains as it is, and \((a^5 b)^{\frac{15}{56}} \) simplifies further by converting it back to:
[tex]\[ (a^5 b)^{\frac{15}{56}} = (a^5 b)^{0.267857142857143} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ (a^5 b)^{0.125} - (a^5 b)^{0.267857142857143} \][/tex]
This is the step-by-step solution to the problem.
1. Convert Radicals to Exponents: Start by expressing the radicals using fractional exponents.
- \(\sqrt[8]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{8}}\).
- \(\sqrt[7]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{7}}\).
2. Rewrite the Expression:
- The given expression can be rewritten as \((a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}}\).
3. Simplify the Product of Exponents: Using the property of exponents that \(x^m \cdot x^n = x^{m+n}\):
- \(\sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\) becomes \((a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}} = (a^5 b)^{\frac{1}{7} + \frac{1}{8}}\).
4. Sum the Exponents:
- Compute \(\frac{1}{7} + \frac{1}{8}\).
- The value \(\frac{1}{7} + \frac{1}{8}\) can be calculated as:
[tex]\[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \][/tex]
5. Rewrite the Expression:
- The expression thus simplifies to:
[tex]\[ (a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{15}{56}} \][/tex]
6. Convert the Exponents Back to Original Form:
- \((a^5 b)^{\frac{1}{8}} \) remains as it is, and \((a^5 b)^{\frac{15}{56}} \) simplifies further by converting it back to:
[tex]\[ (a^5 b)^{\frac{15}{56}} = (a^5 b)^{0.267857142857143} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ (a^5 b)^{0.125} - (a^5 b)^{0.267857142857143} \][/tex]
This is the step-by-step solution to the problem.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.