Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To convert the quadratic function \( f(x) = x^2 - 8x + 11 \) into vertex form, we need to rewrite it in the form of \( f(x) = a(x-h)^2 + k \), where \((h, k)\) is the vertex of the parabola.
Here are the steps to find \( h \) and \( k \):
1. Identify the coefficients \( a \), \( b \), and \( c \) from the standard form \( ax^2 + bx + c \). For \( f(x) = x^2 - 8x + 11 \):
[tex]\[ a = 1, \quad b = -8, \quad c = 11 \][/tex]
2. Calculate \( h \) using the formula \( h = -\frac{b}{2a} \):
[tex]\[ h = -\frac{-8}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]
3. Calculate \( k \) using the formula \( k = c - \frac{b^2}{4a} \):
[tex]\[ k = 11 - \frac{(-8)^2}{4 \cdot 1} = 11 - \frac{64}{4} = 11 - 16 = -5 \][/tex]
So, the vertex of the parabola is \((h, k) = (4, -5)\).
Therefore, the quadratic function \( f(x) = x^2 - 8x + 11 \) written in vertex form is:
[tex]\[ f(x) = (x - 4)^2 - 5 \][/tex]
Among the given choices, the correct one is:
[tex]\[ f(x) = (x - 4)^2 - 5 \][/tex]
Here are the steps to find \( h \) and \( k \):
1. Identify the coefficients \( a \), \( b \), and \( c \) from the standard form \( ax^2 + bx + c \). For \( f(x) = x^2 - 8x + 11 \):
[tex]\[ a = 1, \quad b = -8, \quad c = 11 \][/tex]
2. Calculate \( h \) using the formula \( h = -\frac{b}{2a} \):
[tex]\[ h = -\frac{-8}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]
3. Calculate \( k \) using the formula \( k = c - \frac{b^2}{4a} \):
[tex]\[ k = 11 - \frac{(-8)^2}{4 \cdot 1} = 11 - \frac{64}{4} = 11 - 16 = -5 \][/tex]
So, the vertex of the parabola is \((h, k) = (4, -5)\).
Therefore, the quadratic function \( f(x) = x^2 - 8x + 11 \) written in vertex form is:
[tex]\[ f(x) = (x - 4)^2 - 5 \][/tex]
Among the given choices, the correct one is:
[tex]\[ f(x) = (x - 4)^2 - 5 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.