Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to determine the remaining area of the cardboard after two circles have been punched out of it.
1. Step 1: Understand the given data:
- The area of the rectangular piece of cardboard is 258 cm².
- The multiple-choice answers for the remaining area after punching out two circles are given as 227 cm², 246 cm², and 258 cm².
2. Step 2: Determine which of the given areas correspond to the remaining cardboard after the circles have been removed:
- Subtract the remaining area from the rectangle area to find the area of the circles.
3. Step 3: Calculate the area of the circles punched out:
- When the remaining cardboard area is 227 cm², the area of the circles punched out is:
[tex]\[ \text{Area of circles} = 258 \, \text{cm}^2 - 227 \, \text{cm}^2 = 31 \, \text{cm}^2 \][/tex]
- When the remaining cardboard area is 246 cm², the area of the circles punched out is:
[tex]\[ \text{Area of circles} = 258 \, \text{cm}^2 - 246 \, \text{cm}^2 = 12 \, \text{cm}^2 \][/tex]
4. Step 4: Determine the accuracy of areas:
- If the calculation involves two circles with areas 31 cm² and 12 cm² respectively, then the remaining area of 227 cm² and 246 cm² from other choices are not valid together in this context only.
5. Conclusion:
- After carefully examining the steps, the most accurate solution shed a unique perspective toward option’s credibility overall.
Since the remaining areas after punching out two circles are computed correctly to be 227 cm² and 246 cm² with areas of circles being correct too.
Therefore, the area remaining is
\[
227 \text {cm}^2
246 \text {cm}^2
]
1. Step 1: Understand the given data:
- The area of the rectangular piece of cardboard is 258 cm².
- The multiple-choice answers for the remaining area after punching out two circles are given as 227 cm², 246 cm², and 258 cm².
2. Step 2: Determine which of the given areas correspond to the remaining cardboard after the circles have been removed:
- Subtract the remaining area from the rectangle area to find the area of the circles.
3. Step 3: Calculate the area of the circles punched out:
- When the remaining cardboard area is 227 cm², the area of the circles punched out is:
[tex]\[ \text{Area of circles} = 258 \, \text{cm}^2 - 227 \, \text{cm}^2 = 31 \, \text{cm}^2 \][/tex]
- When the remaining cardboard area is 246 cm², the area of the circles punched out is:
[tex]\[ \text{Area of circles} = 258 \, \text{cm}^2 - 246 \, \text{cm}^2 = 12 \, \text{cm}^2 \][/tex]
4. Step 4: Determine the accuracy of areas:
- If the calculation involves two circles with areas 31 cm² and 12 cm² respectively, then the remaining area of 227 cm² and 246 cm² from other choices are not valid together in this context only.
5. Conclusion:
- After carefully examining the steps, the most accurate solution shed a unique perspective toward option’s credibility overall.
Since the remaining areas after punching out two circles are computed correctly to be 227 cm² and 246 cm² with areas of circles being correct too.
Therefore, the area remaining is
\[
227 \text {cm}^2
246 \text {cm}^2
]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.