Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What is the product?

[tex]\[ (9t - 4)(-9t - 4) \][/tex]

A. \(-81t^2 - 16\)

B. \(-81t^2 + 16\)

C. \(-81t^2 - 72t + 16\)

D. [tex]\(-81t^2 + 72t + 16\)[/tex]


Sagot :

Let's find the product step-by-step:

First, given the two expressions:
[tex]\[ (9t - 4) \][/tex]
and
[tex]\[ (-9t - 4) \][/tex]

We need to calculate the product of these two expressions:
[tex]\[ (9t - 4)(-9t - 4) \][/tex]

To multiply these expressions, we apply the distributive property (also known as the FOIL method for binomials):

1. First terms:
[tex]\[ 9t \times (-9t) = -81t^2 \][/tex]

2. Outer terms:
[tex]\[ 9t \times (-4) = -36t \][/tex]

3. Inner terms:
[tex]\[ -4 \times (-9t) = 36t \][/tex]

4. Last terms:
[tex]\[ -4 \times (-4) = 16 \][/tex]

Now, let's combine all these terms:
[tex]\[ -81t^2 - 36t + 36t + 16 \][/tex]

Notice that the middle terms \(-36t\) and \(36t\) cancel each other out:
[tex]\[ -81t^2 + 16 \][/tex]

Therefore, the product of \((9t - 4)(-9t - 4)\) is:
[tex]\[ -81t^2 + 16 \][/tex]

Among the given options, the correct answer is:
[tex]\[ -81t^2 + 16 \][/tex]