Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To rotate a matrix 90 degrees counterclockwise, we follow these steps:
1. Identify Original Matrix:
Let's start with the original matrix given:
[tex]\[ \begin{array}{cccc} 0 & 0 & -3 & 5 \\ 0 & 0 & 0 & 2 \\ \end{array} \][/tex]
2. Determine Matrix Dimensions:
The original matrix is a 2x4 matrix (2 rows and 4 columns).
3. Prepare for Rotation:
When we rotate a matrix 90 degrees counterclockwise, we'll convert each column of the original matrix into a row in the resulting matrix. The new matrix will be 4x2 (4 rows and 2 columns).
4. Fill the New Matrix:
- The first row of the new matrix will consist of the last column of the original matrix.
- The second row of the new matrix will consist of the third column of the original matrix.
- The third row of the new matrix will consist of the second column of the original matrix.
- The fourth row of the new matrix will consist of the first column of the original matrix.
Therefore, the process is as follows:
[tex]\[ \begin{array}{cccc} 0 & 0 & -3 & 5 \\ 0 & 0 & 0 & 2 \\ \end{array} \][/tex]
becomes:
[tex]\[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \][/tex]
So, after rotation, the 90-degree counterclockwise rotated matrix is:
[tex]\[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \][/tex]
This is the step-by-step process, resulting in the following matrix:
[tex]\[ \left[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \right] \][/tex]
1. Identify Original Matrix:
Let's start with the original matrix given:
[tex]\[ \begin{array}{cccc} 0 & 0 & -3 & 5 \\ 0 & 0 & 0 & 2 \\ \end{array} \][/tex]
2. Determine Matrix Dimensions:
The original matrix is a 2x4 matrix (2 rows and 4 columns).
3. Prepare for Rotation:
When we rotate a matrix 90 degrees counterclockwise, we'll convert each column of the original matrix into a row in the resulting matrix. The new matrix will be 4x2 (4 rows and 2 columns).
4. Fill the New Matrix:
- The first row of the new matrix will consist of the last column of the original matrix.
- The second row of the new matrix will consist of the third column of the original matrix.
- The third row of the new matrix will consist of the second column of the original matrix.
- The fourth row of the new matrix will consist of the first column of the original matrix.
Therefore, the process is as follows:
[tex]\[ \begin{array}{cccc} 0 & 0 & -3 & 5 \\ 0 & 0 & 0 & 2 \\ \end{array} \][/tex]
becomes:
[tex]\[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \][/tex]
So, after rotation, the 90-degree counterclockwise rotated matrix is:
[tex]\[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \][/tex]
This is the step-by-step process, resulting in the following matrix:
[tex]\[ \left[ \begin{array}{cc} 5 & 2 \\ -3 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} \right] \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.