Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the value of \( x \) given that the measures of the angles in a triangle are \( (2x)^\circ \), \( (3x)^\circ \), and \( (x + 60)^\circ \), follow these steps:
1. Recall the Triangle Sum Theorem: The sum of the angles in any triangle is \( 180^\circ \). Therefore, the sum of these given angles must equal \( 180^\circ \):
[tex]\[ (2x) + (3x) + (x + 60) = 180. \][/tex]
2. Combine Like Terms: Add up all the \( x \) terms on the left side of the equation:
- The \( x \) terms are \( 2x \), \( 3x \), and \( x \).
[tex]\[ 2x + 3x + x = 6x. \][/tex]
- Now, the equation becomes:
[tex]\[ 6x + 60 = 180. \][/tex]
3. Isolate the \( x \) Term: First, subtract \( 60 \) from both sides of the equation to move the constant term to the right side:
[tex]\[ 6x + 60 - 60 = 180 - 60, \][/tex]
which simplifies to:
[tex]\[ 6x = 120. \][/tex]
4. Solve for \( x \): Divide both sides of the equation by \( 6 \) to solve for \( x \):
[tex]\[ x = \frac{120}{6} = 20. \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 20 \)[/tex].
1. Recall the Triangle Sum Theorem: The sum of the angles in any triangle is \( 180^\circ \). Therefore, the sum of these given angles must equal \( 180^\circ \):
[tex]\[ (2x) + (3x) + (x + 60) = 180. \][/tex]
2. Combine Like Terms: Add up all the \( x \) terms on the left side of the equation:
- The \( x \) terms are \( 2x \), \( 3x \), and \( x \).
[tex]\[ 2x + 3x + x = 6x. \][/tex]
- Now, the equation becomes:
[tex]\[ 6x + 60 = 180. \][/tex]
3. Isolate the \( x \) Term: First, subtract \( 60 \) from both sides of the equation to move the constant term to the right side:
[tex]\[ 6x + 60 - 60 = 180 - 60, \][/tex]
which simplifies to:
[tex]\[ 6x = 120. \][/tex]
4. Solve for \( x \): Divide both sides of the equation by \( 6 \) to solve for \( x \):
[tex]\[ x = \frac{120}{6} = 20. \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 20 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.