Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A [tex]$0.8715 \, \text{g}$[/tex] sample of sorbic acid, a compound first obtained from the berries of a certain ash tree, is burned completely in oxygen to give [tex]$2.053 \, \text{g}$[/tex] of carbon dioxide and [tex]$0.5601 \, \text{g}$[/tex] of water. The empirical formula of sorbic acid is

a. [tex]$CH_2O$[/tex]

b. [tex]$C_3H_4O$[/tex]

c. [tex]$CH_4O_3$[/tex]

d. [tex]$C_3H_4O_2$[/tex]

e. [tex]$C_2H_4O_2$[/tex]


Sagot :

To determine the empirical formula of sorbic acid, follow these steps:

1. Determine the moles of Carbon in CO₂:
Given mass of CO₂: \(2.053 \, \text{g}\)

Molar mass of CO₂ \( \left( \text{C} + 2 \text{O} \right) \):
\( 12.01 \, \text{g/mol (C)} + 2 \times 16.00 \, \text{g/mol (O)} = 44.01 \, \text{g/mol} \)

Moles of Carbon in CO₂:
[tex]\[ \text{Moles of C} = \frac{2.053 \, \text{g}}{44.01 \, \text{g/mol}} \approx 0.04665 \, \text{mol} \][/tex]

2. Determine the moles of Hydrogen in H₂O:
Given mass of H₂O: \(0.5601 \, \text{g}\)

Molar mass of H₂O \( \left( 2 \text{H} + \text{O} \right) \):
\( 2 \times 1.008 \, \text{g/mol (H)} + 16.00 \, \text{g/mol (O)} = 18.016 \, \text{g/mol} \)

Moles of Hydrogen in H₂O:
[tex]\[ \text{Moles of H} = \frac{0.5601 \, \text{g}}{18.016 \, \text{g/mol}} \times 2 \approx 0.06211 \, \text{mol} \][/tex]

3. Determine the moles of Oxygen:
First, calculate the mass of C and H in the sample:

Mass of Carbon:
[tex]\[ \text{Mass of C} = 0.04665 \, \text{mol} \times 12.01 \, \text{g/mol} \approx 0.560 \, \text{g} \][/tex]

Mass of Hydrogen:
[tex]\[ \text{Mass of H} = 0.06211 \, \text{mol} \times 1.008 \, \text{g/mol} \approx 0.063 \, \text{g} \][/tex]

Total mass of C and H:
[tex]\[ \text{Mass of C + Mass of H} = 0.560 \, \text{g} + 0.063 \, \text{g} = 0.623 \, \text{g} \][/tex]

Given mass of sample: \(0.8715 \, \text{g}\)

Mass of Oxygen in the sample:
[tex]\[ \text{Mass of O} = 0.8715 \, \text{g} - 0.623 \, \text{g} = 0.2485 \, \text{g} \][/tex]

Moles of Oxygen:
[tex]\[ \text{Moles of O} = \frac{0.2485 \, \text{g}}{16.00 \, \text{g/mol}} \approx 0.01553 \, \text{mol} \][/tex]

4. Determine the molar ratio:
Compare the smallest moles to get the empirical formula:
- Moles of C: \(0.04665 \approx 3.0026\)
- Moles of H: \(0.06211 \approx 4.0022\)
- Moles of O: \(0.01553 = 1\)

(Ratios are calculated based on smallest moles of O.)

Therefore, the ratio is:
[tex]\[ \text{C} : \text{H} : \text{O} = 3.0026 : 4.0022 : 1 \][/tex]

5. Empirical formula:
Round to the nearest whole number:
[tex]\[ \text{C} : \text{H} : \text{O} = 3 : 4 : 1 \][/tex]

Hence, the empirical formula of sorbic acid is [tex]\(\text{C}_3\text{H}_4\text{O}\)[/tex], which matches choice (b).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.