At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the greatest possible percent error in calculating the volume of the prism, let's walk through the following steps:
1. Determine the measured volume of the prism:
- Measured dimensions: Length = 10, Width = 6, Height = 4.
- The formula for the volume of a rectangular prism is \( V = \text{Length} \times \text{Width} \times \text{Height} \).
- Plugging in the measured dimensions:
[tex]\[ V_{\text{measured}} = 10 \times 6 \times 4 = 240 \][/tex]
2. Determine the minimum possible volume of the prism:
- Minimum dimensions: Length = 9.5, Width = 5.5, Height = 3.5.
- Using the volume formula:
[tex]\[ V_{\text{min}} = 9.5 \times 5.5 \times 3.5 = 182.875 \][/tex]
3. Determine the maximum possible volume of the prism:
- Maximum dimensions: Length = 10.5, Width = 6.5, Height = 4.5.
- Using the volume formula:
[tex]\[ V_{\text{max}} = 10.5 \times 6.5 \times 4.5 = 307.125 \][/tex]
4. Calculate the error in the volume:
- The error in volume is determined by the difference between the maximum and minimum volumes.
[tex]\[ \text{Error in Volume} = V_{\text{max}} - V_{\text{min}} = 307.125 - 182.875 = 124.25 \][/tex]
5. Calculate the percent error based on the measured volume:
- The percent error is calculated by dividing the error in volume by the measured volume and then multiplying by 100 to get a percentage.
[tex]\[ \text{Percent Error} = \left( \frac{\text{Error in Volume}}{V_{\text{measured}}} \right) \times 100 = \left( \frac{124.25}{240} \right) \times 100 \approx 51.77\% \][/tex]
Thus, the greatest possible percent error in finding the volume of the prism is approximately [tex]\( 51.77\% \)[/tex].
1. Determine the measured volume of the prism:
- Measured dimensions: Length = 10, Width = 6, Height = 4.
- The formula for the volume of a rectangular prism is \( V = \text{Length} \times \text{Width} \times \text{Height} \).
- Plugging in the measured dimensions:
[tex]\[ V_{\text{measured}} = 10 \times 6 \times 4 = 240 \][/tex]
2. Determine the minimum possible volume of the prism:
- Minimum dimensions: Length = 9.5, Width = 5.5, Height = 3.5.
- Using the volume formula:
[tex]\[ V_{\text{min}} = 9.5 \times 5.5 \times 3.5 = 182.875 \][/tex]
3. Determine the maximum possible volume of the prism:
- Maximum dimensions: Length = 10.5, Width = 6.5, Height = 4.5.
- Using the volume formula:
[tex]\[ V_{\text{max}} = 10.5 \times 6.5 \times 4.5 = 307.125 \][/tex]
4. Calculate the error in the volume:
- The error in volume is determined by the difference between the maximum and minimum volumes.
[tex]\[ \text{Error in Volume} = V_{\text{max}} - V_{\text{min}} = 307.125 - 182.875 = 124.25 \][/tex]
5. Calculate the percent error based on the measured volume:
- The percent error is calculated by dividing the error in volume by the measured volume and then multiplying by 100 to get a percentage.
[tex]\[ \text{Percent Error} = \left( \frac{\text{Error in Volume}}{V_{\text{measured}}} \right) \times 100 = \left( \frac{124.25}{240} \right) \times 100 \approx 51.77\% \][/tex]
Thus, the greatest possible percent error in finding the volume of the prism is approximately [tex]\( 51.77\% \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.