Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters, we can use the properties of the normal distribution and the provided standard normal table.
1. Identify the Given Information:
- Mean height, \(\mu\) = 25 meters
- Standard deviation, \(\sigma\) = 6 meters
- Selected height, \(X = 37\) meters
2. Calculate the Z-Score:
The Z-score represents the number of standard deviations a given value is from the mean. The formula for the Z-score is:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
Substituting the given values:
[tex]\[ Z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Find the Probability Corresponding to the Z-Score:
Using the standard normal distribution table, we look up the probability for \(Z = 2.0\). According to the provided table, the probability that a standard normal variable is less than or equal to 2.0 is 0.9772.
4. Calculate the Probability for Greater Heights:
The probability that a randomly selected tree has a height greater than or equal to 37 meters is:
[tex]\[ P(X \geq 37) = 1 - P(Z \leq 2.0) \][/tex]
Using the value from the table:
[tex]\[ P(X \geq 37) = 1 - 0.9772 = 0.0228 \][/tex]
Thus, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is \(0.0228\) or \(2.3\%\).
Answer: [tex]\(2.3\%\)[/tex]
1. Identify the Given Information:
- Mean height, \(\mu\) = 25 meters
- Standard deviation, \(\sigma\) = 6 meters
- Selected height, \(X = 37\) meters
2. Calculate the Z-Score:
The Z-score represents the number of standard deviations a given value is from the mean. The formula for the Z-score is:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
Substituting the given values:
[tex]\[ Z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Find the Probability Corresponding to the Z-Score:
Using the standard normal distribution table, we look up the probability for \(Z = 2.0\). According to the provided table, the probability that a standard normal variable is less than or equal to 2.0 is 0.9772.
4. Calculate the Probability for Greater Heights:
The probability that a randomly selected tree has a height greater than or equal to 37 meters is:
[tex]\[ P(X \geq 37) = 1 - P(Z \leq 2.0) \][/tex]
Using the value from the table:
[tex]\[ P(X \geq 37) = 1 - 0.9772 = 0.0228 \][/tex]
Thus, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is \(0.0228\) or \(2.3\%\).
Answer: [tex]\(2.3\%\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.