Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Using the quadratic formula, solve

[tex]\[4x^2 + 16x + 7 = 0\][/tex]

to find the two possible values of [tex]\(x\)[/tex]. Give any decimal answers to 1 decimal place.

Sagot :

To find the solutions for the quadratic equation \( 4x^2 + 16x + 7 = 0 \), we will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients of the quadratic equation are:
[tex]\[ a = 4,\quad b = 16,\quad c = 7 \][/tex]

### Step-by-Step Solution

1. Calculate the Discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = 16^2 - 4 \cdot 4 \cdot 7 = 256 - 112 = 144 \][/tex]

2. Calculate the Two Possible Values of \(x\):
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

- Calculate \( x_1 \):
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-16 + \sqrt{144}}{2 \cdot 4} = \frac{-16 + 12}{8} = \frac{-4}{8} = -0.5 \][/tex]

- Calculate \( x_2 \):
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 - \sqrt{144}}{2 \cdot 4} = \frac{-16 - 12}{8} = \frac{-28}{8} = -3.5 \][/tex]

3. Round the Solutions:
The solutions are already in the form requiring rounding to 1 decimal place:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]

### Final Answer
The two possible values of \( x \) for the quadratic equation \( 4x^2 + 16x + 7 = 0 \) rounded to 1 decimal place are:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.