Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Work out the size of an interior angle of a regular polygon with 120 sides.

Sagot :

To determine the size of an interior angle of a regular polygon with 120 sides, follow these steps:

1. Understand the formula: The formula to calculate the interior angle of a regular polygon is:
[tex]\[ \text{interior angle} = \frac{(n - 2) \times 180^\circ}{n} \][/tex]
where \( n \) is the number of sides of the polygon.

2. Substitute the number of sides into the formula: In this case, the polygon has 120 sides. Therefore, substitute \( n = 120 \) into the formula.
[tex]\[ \text{interior angle} = \frac{(120 - 2) \times 180^\circ}{120} \][/tex]

3. Simplify the subtraction:
[tex]\[ 120 - 2 = 118 \][/tex]
So the formula now looks like:
[tex]\[ \text{interior angle} = \frac{118 \times 180^\circ}{120} \][/tex]

4. Calculate the multiplication:
[tex]\[ 118 \times 180 = 21240^\circ \][/tex]

5. Divide by the number of sides:
[tex]\[ \frac{21240^\circ}{120} = 177^\circ \][/tex]

Thus, the size of an interior angle of a regular polygon with 120 sides is [tex]\( 177^\circ \)[/tex].