Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If the equation of a circle is [tex]$(x+5)^2+(y-7)^2=36$[/tex], its center point is:

A. [tex]$(5, -7)$[/tex]
B. [tex]$(5, 7)$[/tex]
C. [tex]$(-5, 7)$[/tex]

Sagot :

To find the center of the circle given by the equation \((x+5)^2 + (y-7)^2 = 36\), we need to identify the standard form of a circle's equation, which is:

[tex]\[ (x-h)^2 + (y-k)^2 = r^2 \][/tex]

Here, \((h, k)\) represents the center of the circle and \(r\) represents the radius.

In the given equation:
[tex]\[ (x+5)^2 + (y-7)^2 = 36 \][/tex]

we should match it to the standard form. Comparing the two equations, we observe that:

- \( (x-h)^2 \) matches with \((x+5)^2\), which indicates that \( h = -5 \). This is because \((x - (-5)) = (x + 5)\).

- \( (y-k)^2 \) matches with \((y-7)^2\), which indicates that \( k = 7 \).

Therefore, the center \((h, k)\) of the circle is:

[tex]\[ (-5, 7) \][/tex]

So, the center point of the circle is [tex]\(\boxed{(-5, 7)}\)[/tex].