At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for \(\tan 30^{\circ}\), let's consider the trigonometric function \(\tan\), which is defined for an angle \(\theta\) as the ratio of the length of the opposite side to the length of the adjacent side in a right-angled triangle.
The value of \(\tan 30^{\circ}\) is a well-known trigonometric identity. Specifically, for an angle of \(30^\circ\):
[tex]\[ \tan 30^\circ = \frac{\sqrt{3}}{3} \][/tex]
However, this can also be rewritten using a rationalized form:
[tex]\[ \tan 30^\circ = \frac{1}{\sqrt{3}} \][/tex]
Given the options:
A. \(\sqrt{2}\) \\
B. \(\frac{2}{\sqrt{3}}\) \\
C. \(\frac{1}{\sqrt{3}}\) \\
D. 1 \\
E. \(\frac{\sqrt{3}}{2}\) \\
F. \(\sqrt{3}\)
The correct answer is:
C. \(\frac{1}{\sqrt{3}}\)
Therefore, [tex]\(\tan 30^{\circ} = 0.5773502691896257 \approx \frac{1}{\sqrt{3}} \)[/tex].
The value of \(\tan 30^{\circ}\) is a well-known trigonometric identity. Specifically, for an angle of \(30^\circ\):
[tex]\[ \tan 30^\circ = \frac{\sqrt{3}}{3} \][/tex]
However, this can also be rewritten using a rationalized form:
[tex]\[ \tan 30^\circ = \frac{1}{\sqrt{3}} \][/tex]
Given the options:
A. \(\sqrt{2}\) \\
B. \(\frac{2}{\sqrt{3}}\) \\
C. \(\frac{1}{\sqrt{3}}\) \\
D. 1 \\
E. \(\frac{\sqrt{3}}{2}\) \\
F. \(\sqrt{3}\)
The correct answer is:
C. \(\frac{1}{\sqrt{3}}\)
Therefore, [tex]\(\tan 30^{\circ} = 0.5773502691896257 \approx \frac{1}{\sqrt{3}} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.