Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which system of equations represents the given augmented matrix, we need to convert the matrix back into its corresponding system of linear equations.
The given augmented matrix is:
[tex]\[ \begin{bmatrix} 7 & 6 & -1 & 12 \\ 11 & -8 & 2 & 5 \\ 0 & 7 & -9 & 11 \end{bmatrix} \][/tex]
This matrix translates to the following system of linear equations:
1. \( 7x + 6y - z = 12 \)
2. \( 11x - 8y + 2z = 5 \)
3. \( 0x + 7y - 9z = 11 \)
Now let's compare these equations with the options provided:
Option A:
1. \( 11x + 6y + 2z = 5 \)
2. \( 7x + 9y = 11 \)
3. \( 7x + 6y - z = 12 \)
Option B:
1. \( 11x - 8y + 2z = 5 \)
2. \( x + 7y - 9z = 11 \)
3. \( 7x + 6y - z = 12 \)
Option C:
1. \( 11x - 8y + 2z = 5 \)
2. \( 7y - 9z = 11 \)
3. \( 7x + 6y - z = 12 \)
Option D:
1. \( 11x + 6y + 2z = 5 \)
2. \( x + 7y + 9z = 11 \)
Comparing each option with the derived equations:
- In Option A, the first equation \( 11x + 6y + 2z = 5 \) does not match any equations from the matrix. The second equation \( 7x + 9y = 11 \) also does not match, and the third equation \( 7x + 6y - z = 12 \) matches, but not all equations are correct.
- In Option B, the first equation \( 11x - 8y + 2z = 5 \) matches exactly, the second equation \( x + 7y - 9z = 11 \) correctly simplifies to \( 0x + 7y - 9z = 11 \), and the third equation \( 7x + 6y - z = 12 \) matches exactly.
- In Option C, the first equation \( 11x - 8y + 2z = 5 \) matches, the second equation \( 7y - 9z = 11 \) matches, and the third equation \( 7x + 6y - z = 12 \) also matches.
- In Option D, the first equation \( 11x + 6y + 2z = 5 \) does not match, and the second equation \( x + 7y + 9z = 11 \) also does not match.
From this comparison, it is clear that Option B represents all the equations correctly as derived from the given matrix.
Thus, the correct answer is:
B
The given augmented matrix is:
[tex]\[ \begin{bmatrix} 7 & 6 & -1 & 12 \\ 11 & -8 & 2 & 5 \\ 0 & 7 & -9 & 11 \end{bmatrix} \][/tex]
This matrix translates to the following system of linear equations:
1. \( 7x + 6y - z = 12 \)
2. \( 11x - 8y + 2z = 5 \)
3. \( 0x + 7y - 9z = 11 \)
Now let's compare these equations with the options provided:
Option A:
1. \( 11x + 6y + 2z = 5 \)
2. \( 7x + 9y = 11 \)
3. \( 7x + 6y - z = 12 \)
Option B:
1. \( 11x - 8y + 2z = 5 \)
2. \( x + 7y - 9z = 11 \)
3. \( 7x + 6y - z = 12 \)
Option C:
1. \( 11x - 8y + 2z = 5 \)
2. \( 7y - 9z = 11 \)
3. \( 7x + 6y - z = 12 \)
Option D:
1. \( 11x + 6y + 2z = 5 \)
2. \( x + 7y + 9z = 11 \)
Comparing each option with the derived equations:
- In Option A, the first equation \( 11x + 6y + 2z = 5 \) does not match any equations from the matrix. The second equation \( 7x + 9y = 11 \) also does not match, and the third equation \( 7x + 6y - z = 12 \) matches, but not all equations are correct.
- In Option B, the first equation \( 11x - 8y + 2z = 5 \) matches exactly, the second equation \( x + 7y - 9z = 11 \) correctly simplifies to \( 0x + 7y - 9z = 11 \), and the third equation \( 7x + 6y - z = 12 \) matches exactly.
- In Option C, the first equation \( 11x - 8y + 2z = 5 \) matches, the second equation \( 7y - 9z = 11 \) matches, and the third equation \( 7x + 6y - z = 12 \) also matches.
- In Option D, the first equation \( 11x + 6y + 2z = 5 \) does not match, and the second equation \( x + 7y + 9z = 11 \) also does not match.
From this comparison, it is clear that Option B represents all the equations correctly as derived from the given matrix.
Thus, the correct answer is:
B
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.