Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine if aluminum conducts heat better than steel, the students should proceed with the next logical step Analyze the data. Here's a detailed step-by-step analysis based on the provided experimental observations:
1. Identify the Original Length of Wax:
- Aluminum: \(2.5 \, \text{cm}\)
- Steel: \(2.5 \, \text{cm}\)
2. Identify the Length of Wax Left After 10 Minutes:
- Aluminum: \(1.2 \, \text{cm}\)
- Steel: \(1.8 \, \text{cm}\)
3. Calculate the Amount of Wax Lost:
- For Aluminum:
[tex]\[ \text{Wax Lost}_{\text{Aluminum}} = \text{Original Length} - \text{Length After 10 Minutes} = 2.5 \, \text{cm} - 1.2 \, \text{cm} = 1.3 \, \text{cm} \][/tex]
- For Steel:
[tex]\[ \text{Wax Lost}_{\text{Steel}} = \text{Original Length} - \text{Length After 10 Minutes} = 2.5 \, \text{cm} - 1.8 \, \text{cm} = 0.7 \, \text{cm} \][/tex]
4. Analyze the Amount of Wax Lost:
- The wax lost from the aluminum wire is \(1.3 \, \text{cm}\).
- The wax lost from the steel wire is \(0.7 \, \text{cm}\).
5. Interpret the Results:
- More wax was lost from the aluminum wire compared to the steel wire.
- This indicates that the aluminum wire conducted more heat, causing more wax to melt.
6. Conclusion:
- Since the aluminum wire resulted in a greater loss of wax, this suggests that aluminum conducts heat better than steel.
Based on the above explanation and calculations, the students' analysis should lead them to the conclusion that aluminum is a better thermal conductor than steel.
1. Identify the Original Length of Wax:
- Aluminum: \(2.5 \, \text{cm}\)
- Steel: \(2.5 \, \text{cm}\)
2. Identify the Length of Wax Left After 10 Minutes:
- Aluminum: \(1.2 \, \text{cm}\)
- Steel: \(1.8 \, \text{cm}\)
3. Calculate the Amount of Wax Lost:
- For Aluminum:
[tex]\[ \text{Wax Lost}_{\text{Aluminum}} = \text{Original Length} - \text{Length After 10 Minutes} = 2.5 \, \text{cm} - 1.2 \, \text{cm} = 1.3 \, \text{cm} \][/tex]
- For Steel:
[tex]\[ \text{Wax Lost}_{\text{Steel}} = \text{Original Length} - \text{Length After 10 Minutes} = 2.5 \, \text{cm} - 1.8 \, \text{cm} = 0.7 \, \text{cm} \][/tex]
4. Analyze the Amount of Wax Lost:
- The wax lost from the aluminum wire is \(1.3 \, \text{cm}\).
- The wax lost from the steel wire is \(0.7 \, \text{cm}\).
5. Interpret the Results:
- More wax was lost from the aluminum wire compared to the steel wire.
- This indicates that the aluminum wire conducted more heat, causing more wax to melt.
6. Conclusion:
- Since the aluminum wire resulted in a greater loss of wax, this suggests that aluminum conducts heat better than steel.
Based on the above explanation and calculations, the students' analysis should lead them to the conclusion that aluminum is a better thermal conductor than steel.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.