Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To work out the ratio \( e : g \) given the ratios \( e : f = 4 : 3 \) and \( f : g = 5 : 6 \), follow these steps:
1. Understanding the Ratios:
- \( e : f = 4 : 3 \) means for every 4 units of \( e \), there are 3 units of \( f \).
- \( f : g = 5 : 6 \) means for every 5 units of \( f \), there are 6 units of \( g \).
2. Finding a Common Term:
- To link the ratios, we need a common term, which is \( f \).
- Let's choose a reference value for \( f \). To facilitate the comparison, we use 1 unit of \( f \).
3. Calculating Equivalent Values for \( e \) and \( g \):
- From the ratio \( e : f = 4 : 3 \), if \( f = 1 \),
[tex]\[ e = \frac{4}{3} \times 1 = \frac{4}{3} \][/tex]
- From the ratio \( f : g = 5 : 6 \), if \( f = 1 \),
[tex]\[ g = \frac{6}{5} \times 1 = \frac{6}{5} \][/tex]
4. Finding the Ratio \( e : g \):
- Now, we have \( e = \frac{4}{3} \) and \( g = \frac{6}{5} \).
- To find \( e : g \), we take the ratio of these values:
[tex]\[ e : g = \left( \frac{4}{3} \right) : \left( \frac{6}{5} \right) \][/tex]
- This can be converted to a single fraction by dividing:
[tex]\[ e : g = \frac{\frac{4}{3}}{\frac{6}{5}} = \frac{4}{3} \times \frac{5}{6} = \frac{4 \times 5}{3 \times 6} = \frac{20}{18} = \frac{10}{9} \][/tex]
5. Simplifying the Ratio:
- The ratio \( \frac{10}{9} \) is in its simplest form since the greatest common divisor (GCD) of 10 and 9 is 1.
Thus, the ratio \( e : g \) in its simplest form is
[tex]\[ e : g = 10 : 9 \][/tex]
Therefore, the answer is [tex]\( e : g = \boxed{10 : 9} \)[/tex].
1. Understanding the Ratios:
- \( e : f = 4 : 3 \) means for every 4 units of \( e \), there are 3 units of \( f \).
- \( f : g = 5 : 6 \) means for every 5 units of \( f \), there are 6 units of \( g \).
2. Finding a Common Term:
- To link the ratios, we need a common term, which is \( f \).
- Let's choose a reference value for \( f \). To facilitate the comparison, we use 1 unit of \( f \).
3. Calculating Equivalent Values for \( e \) and \( g \):
- From the ratio \( e : f = 4 : 3 \), if \( f = 1 \),
[tex]\[ e = \frac{4}{3} \times 1 = \frac{4}{3} \][/tex]
- From the ratio \( f : g = 5 : 6 \), if \( f = 1 \),
[tex]\[ g = \frac{6}{5} \times 1 = \frac{6}{5} \][/tex]
4. Finding the Ratio \( e : g \):
- Now, we have \( e = \frac{4}{3} \) and \( g = \frac{6}{5} \).
- To find \( e : g \), we take the ratio of these values:
[tex]\[ e : g = \left( \frac{4}{3} \right) : \left( \frac{6}{5} \right) \][/tex]
- This can be converted to a single fraction by dividing:
[tex]\[ e : g = \frac{\frac{4}{3}}{\frac{6}{5}} = \frac{4}{3} \times \frac{5}{6} = \frac{4 \times 5}{3 \times 6} = \frac{20}{18} = \frac{10}{9} \][/tex]
5. Simplifying the Ratio:
- The ratio \( \frac{10}{9} \) is in its simplest form since the greatest common divisor (GCD) of 10 and 9 is 1.
Thus, the ratio \( e : g \) in its simplest form is
[tex]\[ e : g = 10 : 9 \][/tex]
Therefore, the answer is [tex]\( e : g = \boxed{10 : 9} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.