Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Drag the correct factors to the expression. Not all factors will be used. Use synthetic division to find all the factors of this polynomial.

[tex]\[ 4x^3 + 5x^2 - 18x + 9 \][/tex]

- \( x-1 \)
- \( 2x-3 \)
- \( x-3 \)
- \( x+3 \)
- \( 4x-3 \)
- [tex]\( 2x+1 \)[/tex]

Sagot :

To factor the polynomial \( 4x^3 + 5x^2 - 18x + 9 \) and identify which of the given factors are correct, let's use synthetic division for each candidate factor. We'll check if each factor, when used, leaves a remainder of zero, which would confirm that it is indeed a factor of the polynomial.

### Step-by-Step Factor Verification

#### Synthetic Division for \( x-1 \)
1. Set \( x \) equal to \( 1 \):
[tex]\[ 1 \][/tex]
2. Coefficients of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \):
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} 1 & 4 & 5 & -18 & 9 \\ & & 4 & 9 & -9 \\ \hline & 4 & 9 & -9 & 0 \\ \end{array} \][/tex]

Since the remainder is \( 0 \), \( x-1 \) is a factor.

#### Synthetic Division for \( 2x-3 \)
1. Set \( x = \frac{3}{2} \):
[tex]\[ 1.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} 1.5 & 4 & 5 & -18 & 9 \\ & & 6 & 16.5 & -0.75 \\ \hline & 4 & 11 & -1.5 & 8.25 \\ \end{array} \][/tex]

Since the remainder is \( 8.25 \), \( 2x-3 \) is not a factor.

#### Synthetic Division for \( x-3 \)
1. Set \( x \) equal to \( 3 \):
[tex]\[ 3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} 3 & 4 & 5 & -18 & 9 \\ & & 12 & 51 & 99 \\ \hline & 4 & 17 & 33 & 108 \\ \end{array} \][/tex]

Since the remainder is \( 108 \), \( x-3 \) is not a factor.

#### Synthetic Division for \( x+3 \)
1. Set \( x \) equal to \( -3 \):
[tex]\[ -3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} -3 & 4 & 5 & -18 & 9 \\ & & -12 & 21 & -9 \\ \hline & 4 & -7 & 3 & 0 \\ \end{array} \][/tex]

Since the remainder is \( 0 \), \( x+3 \) is a factor.

#### Synthetic Division for \( 4x-3 \)
1. Set \( x = \frac{3}{4} \):
[tex]\[ 0.75 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} 0.75 & 4 & 5 & -18 & 9 \\ & & 3 & 6 & -9 \\ \hline & 4 & 8 & -12 & 0 \\ \end{array} \][/tex]

Since the remainder is \( 0 \), \( 4x-3 \) is a factor.

#### Synthetic Division for \( 2x+1 \)
1. Set \( x = -\frac{1}{2} \):
[tex]\[ -0.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:

[tex]\[ \begin{array}{r|rrrr} -0.5 & 4 & 5 & -18 & 9 \\ & & -2 & 1 & -0.5 \\ \hline & 4 & 3 & -17 & 8.5 \\ \end{array} \][/tex]

Since the remainder is \( 8.5 \), \( 2x+1 \) is not a factor.

### Conclusion

Therefore, the correct factors of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \) are:
[tex]\[ x-1, \; x+3, \; 4x-3 \][/tex]
The other given factors do not result in a zero remainder when used in synthetic division with the polynomial.