Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To factor the polynomial \( 4x^3 + 5x^2 - 18x + 9 \) and identify which of the given factors are correct, let's use synthetic division for each candidate factor. We'll check if each factor, when used, leaves a remainder of zero, which would confirm that it is indeed a factor of the polynomial.
### Step-by-Step Factor Verification
#### Synthetic Division for \( x-1 \)
1. Set \( x \) equal to \( 1 \):
[tex]\[ 1 \][/tex]
2. Coefficients of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \):
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 1 & 4 & 5 & -18 & 9 \\ & & 4 & 9 & -9 \\ \hline & 4 & 9 & -9 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( x-1 \) is a factor.
#### Synthetic Division for \( 2x-3 \)
1. Set \( x = \frac{3}{2} \):
[tex]\[ 1.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 1.5 & 4 & 5 & -18 & 9 \\ & & 6 & 16.5 & -0.75 \\ \hline & 4 & 11 & -1.5 & 8.25 \\ \end{array} \][/tex]
Since the remainder is \( 8.25 \), \( 2x-3 \) is not a factor.
#### Synthetic Division for \( x-3 \)
1. Set \( x \) equal to \( 3 \):
[tex]\[ 3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 3 & 4 & 5 & -18 & 9 \\ & & 12 & 51 & 99 \\ \hline & 4 & 17 & 33 & 108 \\ \end{array} \][/tex]
Since the remainder is \( 108 \), \( x-3 \) is not a factor.
#### Synthetic Division for \( x+3 \)
1. Set \( x \) equal to \( -3 \):
[tex]\[ -3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} -3 & 4 & 5 & -18 & 9 \\ & & -12 & 21 & -9 \\ \hline & 4 & -7 & 3 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( x+3 \) is a factor.
#### Synthetic Division for \( 4x-3 \)
1. Set \( x = \frac{3}{4} \):
[tex]\[ 0.75 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 0.75 & 4 & 5 & -18 & 9 \\ & & 3 & 6 & -9 \\ \hline & 4 & 8 & -12 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( 4x-3 \) is a factor.
#### Synthetic Division for \( 2x+1 \)
1. Set \( x = -\frac{1}{2} \):
[tex]\[ -0.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} -0.5 & 4 & 5 & -18 & 9 \\ & & -2 & 1 & -0.5 \\ \hline & 4 & 3 & -17 & 8.5 \\ \end{array} \][/tex]
Since the remainder is \( 8.5 \), \( 2x+1 \) is not a factor.
### Conclusion
Therefore, the correct factors of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \) are:
[tex]\[ x-1, \; x+3, \; 4x-3 \][/tex]
The other given factors do not result in a zero remainder when used in synthetic division with the polynomial.
### Step-by-Step Factor Verification
#### Synthetic Division for \( x-1 \)
1. Set \( x \) equal to \( 1 \):
[tex]\[ 1 \][/tex]
2. Coefficients of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \):
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 1 & 4 & 5 & -18 & 9 \\ & & 4 & 9 & -9 \\ \hline & 4 & 9 & -9 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( x-1 \) is a factor.
#### Synthetic Division for \( 2x-3 \)
1. Set \( x = \frac{3}{2} \):
[tex]\[ 1.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 1.5 & 4 & 5 & -18 & 9 \\ & & 6 & 16.5 & -0.75 \\ \hline & 4 & 11 & -1.5 & 8.25 \\ \end{array} \][/tex]
Since the remainder is \( 8.25 \), \( 2x-3 \) is not a factor.
#### Synthetic Division for \( x-3 \)
1. Set \( x \) equal to \( 3 \):
[tex]\[ 3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 3 & 4 & 5 & -18 & 9 \\ & & 12 & 51 & 99 \\ \hline & 4 & 17 & 33 & 108 \\ \end{array} \][/tex]
Since the remainder is \( 108 \), \( x-3 \) is not a factor.
#### Synthetic Division for \( x+3 \)
1. Set \( x \) equal to \( -3 \):
[tex]\[ -3 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} -3 & 4 & 5 & -18 & 9 \\ & & -12 & 21 & -9 \\ \hline & 4 & -7 & 3 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( x+3 \) is a factor.
#### Synthetic Division for \( 4x-3 \)
1. Set \( x = \frac{3}{4} \):
[tex]\[ 0.75 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} 0.75 & 4 & 5 & -18 & 9 \\ & & 3 & 6 & -9 \\ \hline & 4 & 8 & -12 & 0 \\ \end{array} \][/tex]
Since the remainder is \( 0 \), \( 4x-3 \) is a factor.
#### Synthetic Division for \( 2x+1 \)
1. Set \( x = -\frac{1}{2} \):
[tex]\[ -0.5 \][/tex]
2. Coefficients:
[tex]\[ 4, 5, -18, 9 \][/tex]
3. Perform the synthetic division:
[tex]\[ \begin{array}{r|rrrr} -0.5 & 4 & 5 & -18 & 9 \\ & & -2 & 1 & -0.5 \\ \hline & 4 & 3 & -17 & 8.5 \\ \end{array} \][/tex]
Since the remainder is \( 8.5 \), \( 2x+1 \) is not a factor.
### Conclusion
Therefore, the correct factors of the polynomial \( 4x^3 + 5x^2 - 18x + 9 \) are:
[tex]\[ x-1, \; x+3, \; 4x-3 \][/tex]
The other given factors do not result in a zero remainder when used in synthetic division with the polynomial.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.