Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A nick on the edge of a CD rotates to [tex](-6, 5)[/tex] during one song when represented graphically. What is the sine value of this function?

A. [tex]\frac{5 \sqrt{61}}{61}[/tex]
B. [tex]-\frac{6 \sqrt{61}}{61}[/tex]
C. [tex]-\sqrt{61}[/tex]
D. [tex]\sqrt{5}[/tex]


Sagot :

To find the sine value of the given point \((-6, 5)\) on a coordinate plane, we need to understand the basic properties of right triangles and trigonometry concepts.

First, let's identify the key elements:
- The point \((-6, 5)\) represents the coordinates \((x, y)\).
- \(x\) is the horizontal distance from the origin, and \(y\) is the vertical distance from the origin.

The problem requires us to find the sine of the angle \(\theta\) formed by the radius \(r\) (the hypotenuse) connecting the origin (0, 0) to the point \((-6, 5)\).

### Steps to Solve:

1. Determine the hypotenuse \(r\):
The hypotenuse \(r\) of a right triangle can be found using the Pythagorean theorem, which states \(r = \sqrt{x^2 + y^2}\).

2. Calculate \(r\):
[tex]\[ r = \sqrt{(-6)^2 + 5^2} \][/tex]
Breaking it down:
[tex]\[ (-6)^2 = 36 \][/tex]
[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ r = \sqrt{36 + 25} = \sqrt{61} \][/tex]

3. Determine the sine value:
The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the hypotenuse. Here, the opposite side is \(y = 5\) and the hypotenuse is \(r\).

4. Calculate the sine value:
[tex]\[ \sin(\theta) = \frac{y}{r} = \frac{5}{\sqrt{61}} \][/tex]

5. Rationalize the denominator (if necessary):
To rationalize \(\frac{5}{\sqrt{61}}\), multiply the numerator and the denominator by \(\sqrt{61}\):
[tex]\[ \sin(\theta) = \frac{5 \sqrt{61}}{61} \][/tex]

### Conclusion:
The sine value for the point \((-6, 5)\) is:
[tex]\[ \sin(\theta) = \frac{5 \sqrt{61}}{61} \][/tex]

Thus, the correct answer from the given options is:
[tex]\[ \boxed{\frac{5 \sqrt{61}}{61}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.