Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which expression is equivalent to the polynomial \(x^2 + 12\), we need to consider how this polynomial can be factored, especially focusing on complex numbers since the given polynomial has a positive constant term added to \(x^2\).
Given the polynomial:
[tex]\[ x^2 + 12, \][/tex]
we want to find two binomials whose product is this polynomial. We'll examine the provided options one by one.
Option A: \((x + 2\sqrt{3}i)(x - 2\sqrt{3}i)\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3}i)(x - 2\sqrt{3}i) = x^2 - (2\sqrt{3}i)^2 = x^2 - 4 \cdot 3 \cdot (-1) = x^2 + 12. \][/tex]
This matches the given polynomial.
Option B: \((x + 6i)(x - 6i)\)
Let's expand this:
[tex]\[ (x + 6i)(x - 6i) = x^2 - (6i)^2 = x^2 - 36(-1) = x^2 + 36. \][/tex]
This does not match the given polynomial.
Option C: \((x + 2\sqrt{3})^2\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})^2 = x^2 + 2 \cdot x \cdot 2\sqrt{3} + (2\sqrt{3})^2 = x^2 + 4\sqrt{3}x + 12. \][/tex]
This does not match the given polynomial.
Option D: \((x + 2\sqrt{3})(x - 2\sqrt{3})\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})(x - 2\sqrt{3}) = x^2 - (2\sqrt{3})^2 = x^2 - 4 \cdot 3 = x^2 - 12. \][/tex]
This does not match the given polynomial.
Based on the expansions and matchings with the polynomial \(x^2 + 12\), the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Given the polynomial:
[tex]\[ x^2 + 12, \][/tex]
we want to find two binomials whose product is this polynomial. We'll examine the provided options one by one.
Option A: \((x + 2\sqrt{3}i)(x - 2\sqrt{3}i)\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3}i)(x - 2\sqrt{3}i) = x^2 - (2\sqrt{3}i)^2 = x^2 - 4 \cdot 3 \cdot (-1) = x^2 + 12. \][/tex]
This matches the given polynomial.
Option B: \((x + 6i)(x - 6i)\)
Let's expand this:
[tex]\[ (x + 6i)(x - 6i) = x^2 - (6i)^2 = x^2 - 36(-1) = x^2 + 36. \][/tex]
This does not match the given polynomial.
Option C: \((x + 2\sqrt{3})^2\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})^2 = x^2 + 2 \cdot x \cdot 2\sqrt{3} + (2\sqrt{3})^2 = x^2 + 4\sqrt{3}x + 12. \][/tex]
This does not match the given polynomial.
Option D: \((x + 2\sqrt{3})(x - 2\sqrt{3})\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})(x - 2\sqrt{3}) = x^2 - (2\sqrt{3})^2 = x^2 - 4 \cdot 3 = x^2 - 12. \][/tex]
This does not match the given polynomial.
Based on the expansions and matchings with the polynomial \(x^2 + 12\), the correct answer is:
[tex]\[ \boxed{B} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.