Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which system of equations represents the situation accurately, we need to translate the given information into mathematical equations. We are given the costs of three different bouquets:
1. A bouquet with 6 roses, 3 lilies, and 2 carnations costs \$26.75.
2. A bouquet with 3 roses, 4 lilies, and 5 carnations costs \$25.50.
3. A bouquet with 1 rose, 1 lily, and 1 carnation costs \$6.75.
We need to represent these facts with a system of linear equations where \( r \) represents the cost of one rose, \( l \) represents the cost of one lily, and \( c \) represents the cost of one carnation.
Let's write down the equations for each bouquet:
1. For the first bouquet:
[tex]\[ 6r + 3l + 2c = 26.75 \][/tex]
2. For the second bouquet:
[tex]\[ 3r + 4l + 5c = 25.50 \][/tex]
3. For the third bouquet:
[tex]\[ r + l + c = 6.75 \][/tex]
Now we compare these equations to the given choices:
A.
[tex]\[ 6r + 3l + 2c = 25.50 \\ 3r + 4l + 5c = 26.75 \\ 3r = 6.75 \][/tex]
B.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ r + l + c & = 6.75 \end{aligned} \][/tex]
C.
[tex]\[ 6r + 3l + 2c = 25.50 \\ 3r + 4l + 5c = 26.75 \\ r + l + c = 6.75 \][/tex]
D.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ 3r & = 6.75 \end{aligned} \][/tex]
Comparing these, we see that the correct system matches the equations we wrote down:
B.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ r + l + c & = 6.75 \end{aligned} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
1. A bouquet with 6 roses, 3 lilies, and 2 carnations costs \$26.75.
2. A bouquet with 3 roses, 4 lilies, and 5 carnations costs \$25.50.
3. A bouquet with 1 rose, 1 lily, and 1 carnation costs \$6.75.
We need to represent these facts with a system of linear equations where \( r \) represents the cost of one rose, \( l \) represents the cost of one lily, and \( c \) represents the cost of one carnation.
Let's write down the equations for each bouquet:
1. For the first bouquet:
[tex]\[ 6r + 3l + 2c = 26.75 \][/tex]
2. For the second bouquet:
[tex]\[ 3r + 4l + 5c = 25.50 \][/tex]
3. For the third bouquet:
[tex]\[ r + l + c = 6.75 \][/tex]
Now we compare these equations to the given choices:
A.
[tex]\[ 6r + 3l + 2c = 25.50 \\ 3r + 4l + 5c = 26.75 \\ 3r = 6.75 \][/tex]
B.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ r + l + c & = 6.75 \end{aligned} \][/tex]
C.
[tex]\[ 6r + 3l + 2c = 25.50 \\ 3r + 4l + 5c = 26.75 \\ r + l + c = 6.75 \][/tex]
D.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ 3r & = 6.75 \end{aligned} \][/tex]
Comparing these, we see that the correct system matches the equations we wrote down:
B.
[tex]\[ \begin{aligned} 6r + 3l + 2c & = 26.75 \\ 3r + 4l + 5c & = 25.50 \\ r + l + c & = 6.75 \end{aligned} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.