Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the question about a 45-45-90 triangle, let’s first understand the properties of this type of triangle.
A 45-45-90 triangle is a special kind of right triangle where the two legs are of equal length. This means that both angles opposite these legs are 45 degrees each.
One important property of a 45-45-90 triangle is the relationship between the lengths of the legs and the hypotenuse. Here’s how we can determine this relationship:
1. Let’s denote the length of each leg as \( a \).
2. Using the Pythagorean theorem for a right triangle, we have:
[tex]\[ \text{(leg)}^2 + \text{(leg)}^2 = \text{(hypotenuse)}^2 \][/tex]
Substituting the values, we get:
[tex]\[ a^2 + a^2 = \text{(hypotenuse)}^2 \][/tex]
3. Simplifying, we get:
[tex]\[ 2a^2 = \text{(hypotenuse)}^2 \][/tex]
4. Taking the square root of both sides, we find:
[tex]\[ \sqrt{2a^2} = \text{hypotenuse} \][/tex]
[tex]\[ \sqrt{2} \cdot a = \text{hypotenuse} \][/tex]
This tells us that the hypotenuse is \( \sqrt{2} \) times as long as either leg.
Now let’s examine the given choices:
- A. Each leg is \( \sqrt{3} \) times as long as the hypotenuse. (Incorrect, based on the Pythagorean theorem)
- B. The hypotenuse is \( \sqrt{3} \) times as long as either leg. (Incorrect, does not match the relationship we derived)
- C. Each leg is \( \sqrt{2} \) times as long as the hypotenuse. (Incorrect, this is the inverse of the correct relationship)
- D. The hypotenuse is \( \sqrt{2} \) times as long as either leg. (Correct, matches our derived relationship)
Therefore, the correct choice is:
D. The hypotenuse is [tex]\( \sqrt{2} \)[/tex] times as long as either leg.
A 45-45-90 triangle is a special kind of right triangle where the two legs are of equal length. This means that both angles opposite these legs are 45 degrees each.
One important property of a 45-45-90 triangle is the relationship between the lengths of the legs and the hypotenuse. Here’s how we can determine this relationship:
1. Let’s denote the length of each leg as \( a \).
2. Using the Pythagorean theorem for a right triangle, we have:
[tex]\[ \text{(leg)}^2 + \text{(leg)}^2 = \text{(hypotenuse)}^2 \][/tex]
Substituting the values, we get:
[tex]\[ a^2 + a^2 = \text{(hypotenuse)}^2 \][/tex]
3. Simplifying, we get:
[tex]\[ 2a^2 = \text{(hypotenuse)}^2 \][/tex]
4. Taking the square root of both sides, we find:
[tex]\[ \sqrt{2a^2} = \text{hypotenuse} \][/tex]
[tex]\[ \sqrt{2} \cdot a = \text{hypotenuse} \][/tex]
This tells us that the hypotenuse is \( \sqrt{2} \) times as long as either leg.
Now let’s examine the given choices:
- A. Each leg is \( \sqrt{3} \) times as long as the hypotenuse. (Incorrect, based on the Pythagorean theorem)
- B. The hypotenuse is \( \sqrt{3} \) times as long as either leg. (Incorrect, does not match the relationship we derived)
- C. Each leg is \( \sqrt{2} \) times as long as the hypotenuse. (Incorrect, this is the inverse of the correct relationship)
- D. The hypotenuse is \( \sqrt{2} \) times as long as either leg. (Correct, matches our derived relationship)
Therefore, the correct choice is:
D. The hypotenuse is [tex]\( \sqrt{2} \)[/tex] times as long as either leg.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.