Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the equation of the quadratic function that fits the given points in the table, follow these steps:
1. Form the general quadratic equation:
The general form of a quadratic equation is \( y = ax^2 + bx + c \).
2. Set up equations using the given points:
For each point \((x, y)\) in the table, substitute \(x\) and \(y\) into the general quadratic equation.
Given points:
- When \( x = -3 \), \( y = 3.75 \):
[tex]\[ 3.75 = a(-3)^2 + b(-3) + c \implies 3.75 = 9a - 3b + c \][/tex]
- When \( x = -2 \), \( y = 4 \):
[tex]\[ 4 = a(-2)^2 + b(-2) + c \implies 4 = 4a - 2b + c \][/tex]
- When \( x = -1 \), \( y = 3.75 \):
[tex]\[ 3.75 = a(-1)^2 + b(-1) + c \implies 3.75 = a - b + c \][/tex]
3. Solve the system of equations:
[tex]\[ \begin{cases} 9a - 3b + c = 3.75 \\ 4a - 2b + c = 4 \\ a - b + c = 3.75 \\ \end{cases} \][/tex]
Upon solving these equations simultaneously, we get:
- \( a = -0.25 \)
- \( b = -1 \)
- \( c = 3 \)
4. Form the quadratic equation:
Substitute \(a\), \(b\), and \(c\) back into the general form:
[tex]\[ y = -0.25x^2 - x + 3 \][/tex]
Therefore, the correct equation of the quadratic function represented by the table is:
[tex]\[ y = -0.25x^2 - x + 3 \][/tex]
In the given format:
[tex]\(\boxed{y = -0.25x^2 - x + 3}\)[/tex]
1. Form the general quadratic equation:
The general form of a quadratic equation is \( y = ax^2 + bx + c \).
2. Set up equations using the given points:
For each point \((x, y)\) in the table, substitute \(x\) and \(y\) into the general quadratic equation.
Given points:
- When \( x = -3 \), \( y = 3.75 \):
[tex]\[ 3.75 = a(-3)^2 + b(-3) + c \implies 3.75 = 9a - 3b + c \][/tex]
- When \( x = -2 \), \( y = 4 \):
[tex]\[ 4 = a(-2)^2 + b(-2) + c \implies 4 = 4a - 2b + c \][/tex]
- When \( x = -1 \), \( y = 3.75 \):
[tex]\[ 3.75 = a(-1)^2 + b(-1) + c \implies 3.75 = a - b + c \][/tex]
3. Solve the system of equations:
[tex]\[ \begin{cases} 9a - 3b + c = 3.75 \\ 4a - 2b + c = 4 \\ a - b + c = 3.75 \\ \end{cases} \][/tex]
Upon solving these equations simultaneously, we get:
- \( a = -0.25 \)
- \( b = -1 \)
- \( c = 3 \)
4. Form the quadratic equation:
Substitute \(a\), \(b\), and \(c\) back into the general form:
[tex]\[ y = -0.25x^2 - x + 3 \][/tex]
Therefore, the correct equation of the quadratic function represented by the table is:
[tex]\[ y = -0.25x^2 - x + 3 \][/tex]
In the given format:
[tex]\(\boxed{y = -0.25x^2 - x + 3}\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.