At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the location of the vertex \(Q\) of the original rectangle given its image \( Q^{\prime} \) at \((-3, 4)\) after a \(90^\circ\) clockwise rotation around the origin, we follow these steps:
1. Understand the Transformation:
- A \(90^\circ\) clockwise rotation around the origin takes a point \((x, y)\) to \((y, -x)\).
2. Reverse the Rotation:
- To find the original coordinates of \( Q \) before the transformation, we need to reverse the \(90^\circ\) clockwise rotation.
- The reverse of a \(90^\circ\) clockwise rotation is a \(90^\circ\) counterclockwise rotation.
3. Apply the Reverse Transformation:
- For a \(90^\circ\) counterclockwise rotation, a point \((x', y')\) transforms to \((-y', x')\).
4. Calculate the Original Coordinates:
- We have \( Q^{\prime} \) at \((-3, 4)\).
- Applying the reverse transformation:
[tex]\[ x = 4 \quad \text{(formerly y')} \][/tex]
[tex]\[ y = -(-3) = 3 \quad \text{(formerly -x')} \][/tex]
Therefore, the location of \( Q \) is:
[tex]\[ \boxed{(4, 3)} \][/tex]
1. Understand the Transformation:
- A \(90^\circ\) clockwise rotation around the origin takes a point \((x, y)\) to \((y, -x)\).
2. Reverse the Rotation:
- To find the original coordinates of \( Q \) before the transformation, we need to reverse the \(90^\circ\) clockwise rotation.
- The reverse of a \(90^\circ\) clockwise rotation is a \(90^\circ\) counterclockwise rotation.
3. Apply the Reverse Transformation:
- For a \(90^\circ\) counterclockwise rotation, a point \((x', y')\) transforms to \((-y', x')\).
4. Calculate the Original Coordinates:
- We have \( Q^{\prime} \) at \((-3, 4)\).
- Applying the reverse transformation:
[tex]\[ x = 4 \quad \text{(formerly y')} \][/tex]
[tex]\[ y = -(-3) = 3 \quad \text{(formerly -x')} \][/tex]
Therefore, the location of \( Q \) is:
[tex]\[ \boxed{(4, 3)} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.