At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To rotate the given triangle \(90^\circ\) clockwise about the origin, we will follow these steps:
1. Understand the initial points: The triangle is represented by the coordinates in the matrix:
[tex]\[ \left[\begin{array}{ccc} 0 & -3 & 5 \\ 0 & 1 & 2 \end{array}\right] \][/tex]
Each column represents a vertex of the triangle. So, we have the vertices \((0, 0)\), \((-3, 1)\), and \((5, 2)\).
2. Understand the rotation: A \(90^\circ\) clockwise rotation about the origin will transform any point \((x, y)\) to \((y, -x)\).
3. Apply the transformation to each point:
- Vertex \((0, 0)\) becomes \((0, 0)\).
- Vertex \((-3, 1)\) becomes \((1, 3)\).
- Vertex \((5, 2)\) becomes \((2, -5)\).
4. Compile the rotated vertices into a matrix:
[tex]\[ \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 3 & -5 \end{array}\right] \][/tex]
So, the coordinates of the rotated triangle vertices are \((0, 0)\), \((1, 3)\), and \((2, -5)\). This gives us the final matrix representing the rotated triangle:
[tex]\[ \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 3 & -5 \end{array}\right] \][/tex]
1. Understand the initial points: The triangle is represented by the coordinates in the matrix:
[tex]\[ \left[\begin{array}{ccc} 0 & -3 & 5 \\ 0 & 1 & 2 \end{array}\right] \][/tex]
Each column represents a vertex of the triangle. So, we have the vertices \((0, 0)\), \((-3, 1)\), and \((5, 2)\).
2. Understand the rotation: A \(90^\circ\) clockwise rotation about the origin will transform any point \((x, y)\) to \((y, -x)\).
3. Apply the transformation to each point:
- Vertex \((0, 0)\) becomes \((0, 0)\).
- Vertex \((-3, 1)\) becomes \((1, 3)\).
- Vertex \((5, 2)\) becomes \((2, -5)\).
4. Compile the rotated vertices into a matrix:
[tex]\[ \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 3 & -5 \end{array}\right] \][/tex]
So, the coordinates of the rotated triangle vertices are \((0, 0)\), \((1, 3)\), and \((2, -5)\). This gives us the final matrix representing the rotated triangle:
[tex]\[ \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 3 & -5 \end{array}\right] \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.