Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the rates of change of the functions \( f \), \( g \), and \( h \) over the interval \([0, 2]\), we can calculate the slopes of each function over this interval.
### Step 1: Calculate the Rate of Change for \(f\)
The function \( f(x) \) is given by:
[tex]\[ f(x) = x^2 + 2x + 3 \][/tex]
We need to calculate the values of \( f \) at \( x = 0 \) and \( x = 2 \):
[tex]\[ f(0) = 0^2 + 2 \cdot 0 + 3 = 3 \][/tex]
[tex]\[ f(2) = 2^2 + 2 \cdot 2 + 3 = 4 + 4 + 3 = 11 \][/tex]
Now, we calculate the slope over the interval \([0, 2]\):
[tex]\[ \text{slope of } f = \frac{f(2) - f(0)}{2 - 0} = \frac{11 - 3}{2} = \frac{8}{2} = 4.0 \][/tex]
### Step 2: Calculate the Rate of Change for \(h\)
From the table, we have the values of \( h \) at \( x = 0 \) and \( x = 2 \):
[tex]\[ h(0) = -4 \][/tex]
[tex]\[ h(2) = 2 \][/tex]
Now, we calculate the slope over the interval \([0, 2]\):
[tex]\[ \text{slope of } h = \frac{h(2) - h(0)}{2 - 0} = \frac{2 - (-4)}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3.0 \][/tex]
### Step 3: Calculate the Rate of Change for \(g\)
Since \( g(x) \) is assumed to be a linear function and lies between \( f \) and \( h \), its slope will be the average of the slopes of \( f \) and \( h \):
[tex]\[ \text{slope of } g = \frac{\text{slope of } f + \text{slope of } h}{2} = \frac{4.0 + 3.0}{2} = \frac{7.0}{2} = 3.5 \][/tex]
### Step 4: Order the Functions by their Rates of Change
- The slope of \( f \) is \( 4.0 \)
- The slope of \( g \) is \( 3.5 \)
- The slope of \( h \) is \( 3.0 \)
From least to greatest, these slopes are:
[tex]\[ h, g, f \][/tex]
Thus, the correct ordering of the functions by their rate of change from least to greatest over the interval \([0, 2]\) is:
[tex]\[ \text{B. } h, g, f \][/tex]
### Step 1: Calculate the Rate of Change for \(f\)
The function \( f(x) \) is given by:
[tex]\[ f(x) = x^2 + 2x + 3 \][/tex]
We need to calculate the values of \( f \) at \( x = 0 \) and \( x = 2 \):
[tex]\[ f(0) = 0^2 + 2 \cdot 0 + 3 = 3 \][/tex]
[tex]\[ f(2) = 2^2 + 2 \cdot 2 + 3 = 4 + 4 + 3 = 11 \][/tex]
Now, we calculate the slope over the interval \([0, 2]\):
[tex]\[ \text{slope of } f = \frac{f(2) - f(0)}{2 - 0} = \frac{11 - 3}{2} = \frac{8}{2} = 4.0 \][/tex]
### Step 2: Calculate the Rate of Change for \(h\)
From the table, we have the values of \( h \) at \( x = 0 \) and \( x = 2 \):
[tex]\[ h(0) = -4 \][/tex]
[tex]\[ h(2) = 2 \][/tex]
Now, we calculate the slope over the interval \([0, 2]\):
[tex]\[ \text{slope of } h = \frac{h(2) - h(0)}{2 - 0} = \frac{2 - (-4)}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3.0 \][/tex]
### Step 3: Calculate the Rate of Change for \(g\)
Since \( g(x) \) is assumed to be a linear function and lies between \( f \) and \( h \), its slope will be the average of the slopes of \( f \) and \( h \):
[tex]\[ \text{slope of } g = \frac{\text{slope of } f + \text{slope of } h}{2} = \frac{4.0 + 3.0}{2} = \frac{7.0}{2} = 3.5 \][/tex]
### Step 4: Order the Functions by their Rates of Change
- The slope of \( f \) is \( 4.0 \)
- The slope of \( g \) is \( 3.5 \)
- The slope of \( h \) is \( 3.0 \)
From least to greatest, these slopes are:
[tex]\[ h, g, f \][/tex]
Thus, the correct ordering of the functions by their rate of change from least to greatest over the interval \([0, 2]\) is:
[tex]\[ \text{B. } h, g, f \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.