Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the horizontal asymptote of the function \( f(x) = \frac{-2}{x-2} - 2 \), we need to analyze the behavior of the function as \( x \) approaches infinity (or negative infinity). The horizontal asymptote will be the value that the function \( f(x) \) approaches as \( x \) becomes very large (positively or negatively).
Let's examine the given function \( f(x) = \frac{-2}{x-2} - 2 \).
1. Consider the term \(\frac{-2}{x-2}\):
- As \( x \) becomes very large (i.e., \( x \to \infty \)), the term \( x - 2 \) also becomes very large.
- Since \(\frac{-2}{x-2}\) involves division by a large number, \(\frac{-2}{x-2}\) approaches 0.
2. Analyze the behavior as \( x \to \infty \):
[tex]\[ \lim_{{x \to \infty}} f(x) = \lim_{{x \to \infty}} \left( \frac{-2}{x-2} - 2 \right) \][/tex]
- As established, \(\frac{-2}{x-2} \to 0\) as \( x \to \infty \).
- Hence, we get:
[tex]\[ \lim_{{x \to \infty}} f(x) = 0 - 2 = -2 \][/tex]
Therefore, as \( x \) approaches infinity, \( f(x) \) approaches \(-2\).
3. Conclusion:
The horizontal asymptote of the function \( f(x) = \frac{-2}{x-2} - 2 \) is \( y = -2 \). In other words, \( f(x) \) approaches the value \(-2\) as \( x \) becomes very large in either direction.
Thus, the correct answer is:
[tex]\[ \boxed{f(x) = -2} \][/tex]
Let's examine the given function \( f(x) = \frac{-2}{x-2} - 2 \).
1. Consider the term \(\frac{-2}{x-2}\):
- As \( x \) becomes very large (i.e., \( x \to \infty \)), the term \( x - 2 \) also becomes very large.
- Since \(\frac{-2}{x-2}\) involves division by a large number, \(\frac{-2}{x-2}\) approaches 0.
2. Analyze the behavior as \( x \to \infty \):
[tex]\[ \lim_{{x \to \infty}} f(x) = \lim_{{x \to \infty}} \left( \frac{-2}{x-2} - 2 \right) \][/tex]
- As established, \(\frac{-2}{x-2} \to 0\) as \( x \to \infty \).
- Hence, we get:
[tex]\[ \lim_{{x \to \infty}} f(x) = 0 - 2 = -2 \][/tex]
Therefore, as \( x \) approaches infinity, \( f(x) \) approaches \(-2\).
3. Conclusion:
The horizontal asymptote of the function \( f(x) = \frac{-2}{x-2} - 2 \) is \( y = -2 \). In other words, \( f(x) \) approaches the value \(-2\) as \( x \) becomes very large in either direction.
Thus, the correct answer is:
[tex]\[ \boxed{f(x) = -2} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.