Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the factored form of the given expression, we start with the expression:
[tex]\[ 4(x^2 - 2x) - 2(x^2 - 3) \][/tex]
Let's proceed step by step to simplify and factor the expression.
Step 1: Distribute the constants inside the parentheses.
[tex]\[ 4(x^2 - 2x) = 4x^2 - 8x \][/tex]
[tex]\[ -2(x^2 - 3) = -2x^2 + 6 \][/tex]
Step 2: Combine these two expressions.
[tex]\[ 4x^2 - 8x - 2x^2 + 6 \][/tex]
Step 3: Simplify the combined expression by combining like terms.
[tex]\[ (4x^2 - 2x^2) + (-8x) + 6 = 2x^2 - 8x + 6 \][/tex]
Step 4: Factor the expression \(2x^2 - 8x + 6\).
First, we factor out the greatest common factor (GCF), which is 2:
[tex]\[ 2(x^2 - 4x + 3) \][/tex]
Now, we need to factor the quadratic expression inside the parentheses:
[tex]\[ x^2 - 4x + 3 \][/tex]
To factor \(x^2 - 4x + 3\), we need to find two numbers that multiply to \(3\) (the constant term) and add to \(-4\) (the coefficient of \(x\)).
These two numbers are \(-1\) and \(-3\) because:
[tex]\[ -1 \cdot (-3) = 3 \quad \text{and} \quad -1 + (-3) = -4 \][/tex]
So, the expression \(x^2 - 4x + 3\) can be factored as:
[tex]\[ (x - 1)(x - 3) \][/tex]
Putting it all together, we have:
[tex]\[ 2(x - 1)(x - 3) \][/tex]
Thus, the factored form of the original expression is:
[tex]\[ 2(x - 1)(x - 3) \][/tex]
So, the correct answer is:
C. [tex]\(2(x-1)(x-3)\)[/tex]
[tex]\[ 4(x^2 - 2x) - 2(x^2 - 3) \][/tex]
Let's proceed step by step to simplify and factor the expression.
Step 1: Distribute the constants inside the parentheses.
[tex]\[ 4(x^2 - 2x) = 4x^2 - 8x \][/tex]
[tex]\[ -2(x^2 - 3) = -2x^2 + 6 \][/tex]
Step 2: Combine these two expressions.
[tex]\[ 4x^2 - 8x - 2x^2 + 6 \][/tex]
Step 3: Simplify the combined expression by combining like terms.
[tex]\[ (4x^2 - 2x^2) + (-8x) + 6 = 2x^2 - 8x + 6 \][/tex]
Step 4: Factor the expression \(2x^2 - 8x + 6\).
First, we factor out the greatest common factor (GCF), which is 2:
[tex]\[ 2(x^2 - 4x + 3) \][/tex]
Now, we need to factor the quadratic expression inside the parentheses:
[tex]\[ x^2 - 4x + 3 \][/tex]
To factor \(x^2 - 4x + 3\), we need to find two numbers that multiply to \(3\) (the constant term) and add to \(-4\) (the coefficient of \(x\)).
These two numbers are \(-1\) and \(-3\) because:
[tex]\[ -1 \cdot (-3) = 3 \quad \text{and} \quad -1 + (-3) = -4 \][/tex]
So, the expression \(x^2 - 4x + 3\) can be factored as:
[tex]\[ (x - 1)(x - 3) \][/tex]
Putting it all together, we have:
[tex]\[ 2(x - 1)(x - 3) \][/tex]
Thus, the factored form of the original expression is:
[tex]\[ 2(x - 1)(x - 3) \][/tex]
So, the correct answer is:
C. [tex]\(2(x-1)(x-3)\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.