Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which function among the given options has a vertical asymptote at \( x = -2 \), a horizontal asymptote at \( f(x) = -1 \), and a root at \( x = 2 \), we need to check each of the functions based on these criteria. Let's analyze each function step-by-step:
### Function A: \( f(x) = \frac{4}{x+2} - 1 \)
1. Vertical Asymptote: A vertical asymptote occurs where the denominator is zero. For \( f(x) = \frac{4}{x+2} - 1 \), the denominator is zero at \( x = -2 \). Therefore, it has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: Horizontal asymptotes for rational functions of the form \( \frac{a}{x+b} + c \) occur at \( y = c \) as \( x \) approaches infinity. Here, as \( x \rightarrow \infty \), \( f(x) \rightarrow -1 \).
3. Root: A root of the function occurs where \( f(x) = 0 \). Set the function equal to zero:
[tex]\[ \frac{4}{x+2} - 1 = 0 \implies \frac{4}{x+2} = 1 \implies 4 = x + 2 \implies x = 2 \][/tex]
Therefore, \( x = 2 \) is a root.
Since function A meets all criteria, it is a candidate. Let's verify the other functions to ensure there is only one correct answer.
### Function B: \( f(x) = \frac{4}{x-2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero. Here, \( f(x) = \frac{4}{x-2} - 1 \) has a denominator of zero at \( x = 2 \), not \( x = -2 \). This function does not meet the first criterion.
### Function C: \( f(x) = \frac{-4}{x+2} + 1 \)
1. Vertical Asymptote: The denominator is zero at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \( 1 \), not \(-1\). This function does not meet the second criterion.
### Function D: \( f(x) = \frac{-4}{x+2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero, which is at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \(-1\), which meets the second criterion.
3. Root: Set the function to zero:
[tex]\[ \frac{-4}{x+2} - 1 = 0 \implies \frac{-4}{x+2} = 1 \implies -4 = x + 2 \implies x = -6 \][/tex]
Therefore, \( x = -6 \) but we need a root at \( x = 2 \). This function does not meet the third criterion.
After evaluating all options, we find that:
- Function A: \( f(x) = \frac{4}{x+2} - 1 \) meets all criteria.
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
### Function A: \( f(x) = \frac{4}{x+2} - 1 \)
1. Vertical Asymptote: A vertical asymptote occurs where the denominator is zero. For \( f(x) = \frac{4}{x+2} - 1 \), the denominator is zero at \( x = -2 \). Therefore, it has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: Horizontal asymptotes for rational functions of the form \( \frac{a}{x+b} + c \) occur at \( y = c \) as \( x \) approaches infinity. Here, as \( x \rightarrow \infty \), \( f(x) \rightarrow -1 \).
3. Root: A root of the function occurs where \( f(x) = 0 \). Set the function equal to zero:
[tex]\[ \frac{4}{x+2} - 1 = 0 \implies \frac{4}{x+2} = 1 \implies 4 = x + 2 \implies x = 2 \][/tex]
Therefore, \( x = 2 \) is a root.
Since function A meets all criteria, it is a candidate. Let's verify the other functions to ensure there is only one correct answer.
### Function B: \( f(x) = \frac{4}{x-2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero. Here, \( f(x) = \frac{4}{x-2} - 1 \) has a denominator of zero at \( x = 2 \), not \( x = -2 \). This function does not meet the first criterion.
### Function C: \( f(x) = \frac{-4}{x+2} + 1 \)
1. Vertical Asymptote: The denominator is zero at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \( 1 \), not \(-1\). This function does not meet the second criterion.
### Function D: \( f(x) = \frac{-4}{x+2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero, which is at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \(-1\), which meets the second criterion.
3. Root: Set the function to zero:
[tex]\[ \frac{-4}{x+2} - 1 = 0 \implies \frac{-4}{x+2} = 1 \implies -4 = x + 2 \implies x = -6 \][/tex]
Therefore, \( x = -6 \) but we need a root at \( x = 2 \). This function does not meet the third criterion.
After evaluating all options, we find that:
- Function A: \( f(x) = \frac{4}{x+2} - 1 \) meets all criteria.
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.