Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the point of intersection of the terminal side of an angle measuring \(\frac{\pi}{6}\) radians with the unit circle, follow these steps:
1. Understand the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin (0,0) in the coordinate plane.
2. Determine Cosine and Sine Values for \(\frac{\pi}{6}\):
- The cosine of an angle \(\theta\) on the unit circle represents the x-coordinate of the point of intersection.
- The sine of an angle \(\theta\) on the unit circle represents the y-coordinate of the point of intersection.
3. Calculate the Cosine and Sine for \(\frac{\pi}{6}\):
- \(\cos\left(\frac{\pi}{6}\right)\) gives the x-coordinate.
- \(\sin\left(\frac{\pi}{6}\right)\) gives the y-coordinate.
4. Recall the Known Trigonometric Values:
- \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\)
- \(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)
5. Combine the Coordinates:
- Thus, the point where the terminal side at \(\frac{\pi}{6}\) radians intersects the unit circle is \(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\).
Therefore, the point where the terminal side of an angle measuring \(\frac{\pi}{6}\) radians intersects the unit circle is:
[tex]\[ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
1. Understand the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin (0,0) in the coordinate plane.
2. Determine Cosine and Sine Values for \(\frac{\pi}{6}\):
- The cosine of an angle \(\theta\) on the unit circle represents the x-coordinate of the point of intersection.
- The sine of an angle \(\theta\) on the unit circle represents the y-coordinate of the point of intersection.
3. Calculate the Cosine and Sine for \(\frac{\pi}{6}\):
- \(\cos\left(\frac{\pi}{6}\right)\) gives the x-coordinate.
- \(\sin\left(\frac{\pi}{6}\right)\) gives the y-coordinate.
4. Recall the Known Trigonometric Values:
- \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\)
- \(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)
5. Combine the Coordinates:
- Thus, the point where the terminal side at \(\frac{\pi}{6}\) radians intersects the unit circle is \(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\).
Therefore, the point where the terminal side of an angle measuring \(\frac{\pi}{6}\) radians intersects the unit circle is:
[tex]\[ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.