Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to determine the minimum value of \( n \) such that the perimeter of the triangle is at least 37 units.
Given the side lengths of the triangle:
- First side: \( n \)
- Second side: \( n - 3 \)
- Third side: \( 2(n - 2) \)
The perimeter \( P \) of the triangle is the sum of the lengths of its sides. Therefore, we can express the perimeter as:
[tex]\[ P = n + (n - 3) + 2(n - 2) \][/tex]
Simplify the expression:
[tex]\[ P = n + n - 3 + 2n - 4 \][/tex]
Combine like terms:
[tex]\[ P = 4n - 7 \][/tex]
We want the perimeter to be at least 37 units, so we set up the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
To solve for \( n \), first isolate \( n \) on one side of the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
Add 7 to both sides:
[tex]\[ 4n \geq 44 \][/tex]
Divide both sides by 4:
[tex]\[ n \geq 11 \][/tex]
Therefore, the minimum value of \( n \) that satisfies this condition is \( 11 \). Thus, the correct answer is:
B. [tex]\( n \geq 11 \)[/tex]
Given the side lengths of the triangle:
- First side: \( n \)
- Second side: \( n - 3 \)
- Third side: \( 2(n - 2) \)
The perimeter \( P \) of the triangle is the sum of the lengths of its sides. Therefore, we can express the perimeter as:
[tex]\[ P = n + (n - 3) + 2(n - 2) \][/tex]
Simplify the expression:
[tex]\[ P = n + n - 3 + 2n - 4 \][/tex]
Combine like terms:
[tex]\[ P = 4n - 7 \][/tex]
We want the perimeter to be at least 37 units, so we set up the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
To solve for \( n \), first isolate \( n \) on one side of the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
Add 7 to both sides:
[tex]\[ 4n \geq 44 \][/tex]
Divide both sides by 4:
[tex]\[ n \geq 11 \][/tex]
Therefore, the minimum value of \( n \) that satisfies this condition is \( 11 \). Thus, the correct answer is:
B. [tex]\( n \geq 11 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.