Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, let's understand the relationship between the given side lengths and the perimeter of the triangle.
1. Identify the given values:
- The longest side of the triangle: \(6.2 \, \text{cm}\)
- The perimeter of the triangle: \(14.5 \, \text{cm}\)
- The longest side is twice the shortest side.
2. Determine the algebraic relationship:
Let's denote:
- The shortest side as \( a \)
- The middle side as \( b \)
From the problem, we know that the longest side is twice the shortest side:
[tex]\[ \text{Longest side} = 2a = 6.2 \, \text{cm} \][/tex]
Solving for \( a \), we get:
[tex]\[ a = \frac{6.2}{2} = 3.1 \, \text{cm} \][/tex]
3. Express the perimeter equation:
The perimeter of the triangle is the sum of all its sides:
[tex]\[ \text{Perimeter} = \text{Shortest side} + \text{Middle side} + \text{Longest side} \][/tex]
Substituting the known values, we get:
[tex]\[ 14.5 = a + b + 6.2 \][/tex]
Since \( a \) is \( 3.1 \, \text{cm} \):
[tex]\[ 14.5 = 3.1 + b + 6.2 \][/tex]
4. Find \( b \):
Rearrange the equation to solve for \( b \):
[tex]\[ b = 14.5 - 6.2 \][/tex]
[tex]\[ b = 14.5 - 6.2 = 8.3 \][/tex]
This step confirms that the calculations are correctly done and the middle side \( b \) has been identified as \( 8.3 \, \text{cm} \).
5. Verify the correct equation:
Let's check the given multiple-choice options to see which equation is consistent with our determined perimeter value.
- \( 6.2 + b = 14.5 \)
- \( 9.3 + b = 14.5 \)
- \( 12.4 + b = 14.5 \)
- \( 18.6 + b = 14.5 \)
Substituting \( b = 8.3 \) into each equation:
- \( 6.2 + 8.3 = 14.5 \), which is correct.
- \( 9.3 + 8.3 = 17.6 \), which is incorrect.
- \( 12.4 + 8.3 = 20.7 \), which is incorrect.
- \( 18.6 + 8.3 = 26.9 \), which is incorrect.
Therefore, the correct equation which can be used to find the side lengths, given the conditions of the problem, is:
[tex]\[ \boxed{6.2 + b = 14.5} \][/tex]
1. Identify the given values:
- The longest side of the triangle: \(6.2 \, \text{cm}\)
- The perimeter of the triangle: \(14.5 \, \text{cm}\)
- The longest side is twice the shortest side.
2. Determine the algebraic relationship:
Let's denote:
- The shortest side as \( a \)
- The middle side as \( b \)
From the problem, we know that the longest side is twice the shortest side:
[tex]\[ \text{Longest side} = 2a = 6.2 \, \text{cm} \][/tex]
Solving for \( a \), we get:
[tex]\[ a = \frac{6.2}{2} = 3.1 \, \text{cm} \][/tex]
3. Express the perimeter equation:
The perimeter of the triangle is the sum of all its sides:
[tex]\[ \text{Perimeter} = \text{Shortest side} + \text{Middle side} + \text{Longest side} \][/tex]
Substituting the known values, we get:
[tex]\[ 14.5 = a + b + 6.2 \][/tex]
Since \( a \) is \( 3.1 \, \text{cm} \):
[tex]\[ 14.5 = 3.1 + b + 6.2 \][/tex]
4. Find \( b \):
Rearrange the equation to solve for \( b \):
[tex]\[ b = 14.5 - 6.2 \][/tex]
[tex]\[ b = 14.5 - 6.2 = 8.3 \][/tex]
This step confirms that the calculations are correctly done and the middle side \( b \) has been identified as \( 8.3 \, \text{cm} \).
5. Verify the correct equation:
Let's check the given multiple-choice options to see which equation is consistent with our determined perimeter value.
- \( 6.2 + b = 14.5 \)
- \( 9.3 + b = 14.5 \)
- \( 12.4 + b = 14.5 \)
- \( 18.6 + b = 14.5 \)
Substituting \( b = 8.3 \) into each equation:
- \( 6.2 + 8.3 = 14.5 \), which is correct.
- \( 9.3 + 8.3 = 17.6 \), which is incorrect.
- \( 12.4 + 8.3 = 20.7 \), which is incorrect.
- \( 18.6 + 8.3 = 26.9 \), which is incorrect.
Therefore, the correct equation which can be used to find the side lengths, given the conditions of the problem, is:
[tex]\[ \boxed{6.2 + b = 14.5} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.