Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Given the function:

[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]

Identify its critical points and determine the nature of each (local maxima, local minima, or saddle point).


Sagot :

Sure, let's go through this step by step:

### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]

A. Finding the Roots of the Equation \( y = 0 \):

1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]

The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]

So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]

B. Determining the Critical Points:

2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]

The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]

3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):

[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]

Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]

The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]

C. Classifying the Critical Points Using the Second Derivative:

4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]

The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]

5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.

For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]

For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]

Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]

[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]

Summary:

- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.