Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Given the function:

[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]

Identify its critical points and determine the nature of each (local maxima, local minima, or saddle point).

Sagot :

Sure, let's go through this step by step:

### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]

A. Finding the Roots of the Equation \( y = 0 \):

1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]

The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]

So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]

B. Determining the Critical Points:

2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]

The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]

3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):

[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]

Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]

The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]

C. Classifying the Critical Points Using the Second Derivative:

4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]

The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]

5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.

For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]

For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]

Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]

[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]

Summary:

- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.