At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Type the correct answer in each box. Use numerals instead of words.

The ideal temperature for proofing yeast for baking is 107.5°F. However, yeast will proof within a variation of 2.5°F. Write an absolute value inequality to model this situation, and then use the inequality to complete the statement.

Yeast will proof in temperatures that are at least ______°F and at most ______°F.

Absolute value inequality: [tex] |T - 107.5| \leq 2.5 [/tex]

Sagot :

To model the situation with an absolute value inequality, consider that the ideal temperature for proofing yeast is 107.5°F, with a variation of 2.5°F. We can write the absolute value inequality as:

[tex]\[ |T - 107.5| \leq 2.5 \][/tex]

This inequality means that the temperature \( T \) can vary by 2.5°F from the ideal temperature of 107.5°F.

To find the range of acceptable temperatures, we need to calculate the lower and upper bounds:
1. The lower bound is:
[tex]\[ 107.5 - 2.5 = 105.0 \][/tex]
2. The upper bound is:
[tex]\[ 107.5 + 2.5 = 110.0 \][/tex]

Therefore, yeast will proof in temperatures that are at least 105.0°F and at most 110.0°F degrees.