Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the pre-image of vertex [tex]A'[/tex] if the rule that created the image is [tex]r_{y \text{-axis}}(x, y) \rightarrow (-x, y)[/tex]?

A. [tex]A(-4, 2)[/tex]
B. [tex]A(-2, -4)[/tex]
C. [tex]A(2, 4)[/tex]
D. [tex]A(4, -2)[/tex]


Sagot :

To determine the pre-image of a vertex \( A' \) given the rule \( r_{y \text{-axis}} (x, y) \rightarrow (-x, y) \), we need to understand that this rule reflects points over the y-axis. This reflection changes the sign of the x-coordinate while leaving the y-coordinate unchanged.

Now, let's determine the pre-image of each of the possible given points:

1. Given point \( A(-4, 2) \):
- If this is a reflection of a point over the y-axis, then we start with the point before reflection, which would be \((x, y) = (4, 2)\).

2. Given point \( A(-2, -4) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (2, -4)\).

3. Given point \( A(2, 4) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (-2, 4)\).

4. Given point \( A(4, -2) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (-4, -2)\).

Thus, the pre-images for the given points are:
- For \( A(-4, 2) \), the pre-image is \( (4, 2) \).
- For \( A(-2, -4) \), the pre-image is \( (2, -4) \).
- For \( A(2, 4) \), the pre-image is \( (-2, 4) \).
- For \( A(4, -2) \), the pre-image is \( (-4, -2) \).

So the pre-images are:
[tex]\[ \begin{aligned} & (4, 2), \\ & (2, -4), \\ & (-2, 4), \\ & (-4, -2). \end{aligned} \][/tex]