Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which set of values could be the side lengths of a 30-60-90 triangle, we need to understand the properties of a 30-60-90 triangle. In such a triangle, the sides are in a specific ratio:
- The side opposite the 30-degree angle is the shortest and is denoted as \( x \).
- The side opposite the 60-degree angle is \( x \sqrt{3} \).
- The hypotenuse (opposite the 90-degree angle) is \( 2x \).
Given these properties, we will now check each set of values to see which one fits the \( 1 : \sqrt{3} : 2 \) ratio.
### Option A: \(\{6, 12, 12\sqrt{3}\}\)
1. Let's denote the shortest side as \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \). Here it is given as \( 12 \), which does not fit.
3. The hypotenuse should be \( 12 \), and here it is \( 12\sqrt{3} \), which does not fit either.
So, Option A is not correct.
### Option B: \(\{6, 6 \sqrt{3}, 12\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), which matches the given value \( 6 \sqrt{3} \).
3. The hypotenuse should be \( 12 \), and it is given as \( 12 \), which also matches.
So, Option B fits the required side lengths of a 30-60-90 triangle.
### Option C: \(\{6, 6 \sqrt{2}, 12\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), but here it is given as \( 6 \sqrt{2} \), which does not fit.
3. The hypotenuse should be \( 12 \), and it matches, but the middle side is incorrect.
So, Option C is not correct.
### Option D: \(\{6, 12, 12 \sqrt{2}\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), but here it is given as \( 12 \), which does not fit.
3. The hypotenuse should be \( 12 \), and it is \( 12 \sqrt{2} \), which also does not fit.
So, Option D is not correct.
### Conclusion
The only set of values that matches the side lengths of a 30-60-90 triangle is Option B: \(\{6, 6 \sqrt{3}, 12\}\).
So, the correct answer is:
B. [tex]\( \{6, 6 \sqrt{3}, 12\} \)[/tex]
- The side opposite the 30-degree angle is the shortest and is denoted as \( x \).
- The side opposite the 60-degree angle is \( x \sqrt{3} \).
- The hypotenuse (opposite the 90-degree angle) is \( 2x \).
Given these properties, we will now check each set of values to see which one fits the \( 1 : \sqrt{3} : 2 \) ratio.
### Option A: \(\{6, 12, 12\sqrt{3}\}\)
1. Let's denote the shortest side as \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \). Here it is given as \( 12 \), which does not fit.
3. The hypotenuse should be \( 12 \), and here it is \( 12\sqrt{3} \), which does not fit either.
So, Option A is not correct.
### Option B: \(\{6, 6 \sqrt{3}, 12\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), which matches the given value \( 6 \sqrt{3} \).
3. The hypotenuse should be \( 12 \), and it is given as \( 12 \), which also matches.
So, Option B fits the required side lengths of a 30-60-90 triangle.
### Option C: \(\{6, 6 \sqrt{2}, 12\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), but here it is given as \( 6 \sqrt{2} \), which does not fit.
3. The hypotenuse should be \( 12 \), and it matches, but the middle side is incorrect.
So, Option C is not correct.
### Option D: \(\{6, 12, 12 \sqrt{2}\}\)
1. Let the shortest side be \( x = 6 \).
2. The side opposite the 60-degree angle should be \( 6 \sqrt{3} \), but here it is given as \( 12 \), which does not fit.
3. The hypotenuse should be \( 12 \), and it is \( 12 \sqrt{2} \), which also does not fit.
So, Option D is not correct.
### Conclusion
The only set of values that matches the side lengths of a 30-60-90 triangle is Option B: \(\{6, 6 \sqrt{3}, 12\}\).
So, the correct answer is:
B. [tex]\( \{6, 6 \sqrt{3}, 12\} \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.