Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate an estimate of the mean travelling time, we follow these steps:
1. Determine the midpoint of each class interval:
- For the interval \(0 < t \leq 10\): midpoint \( = \frac{0 + 10}{2} = 5\)
- For the interval \(10 < t \leq 20\): midpoint \( = \frac{10 + 20}{2} = 15\)
- For the interval \(20 < t \leq 30\): midpoint \( = \frac{20 + 30}{2} = 25\)
- For the interval \(30 < t \leq 40\): midpoint \( = \frac{30 + 40}{2} = 35\)
- For the interval \(40 < t \leq 50\): midpoint \( = \frac{40 + 50}{2} = 45\)
2. List the frequencies:
- The frequencies are \(5, 15, 13, 10, \) and \(7\) corresponding to each class interval respectively.
3. Calculate the sum of the frequencies:
[tex]\[ \text{Total frequency} = 5 + 15 + 13 + 10 + 7 = 50 \][/tex]
4. Calculate the weighted sum of the midpoints:
- Multiply each midpoint by its respective frequency and sum up the results:
[tex]\[ (5 \times 5) + (15 \times 15) + (25 \times 13) + (35 \times 10) + (45 \times 7) \][/tex]
- Calculate each term:
[tex]\[ 5 \times 5 = 25 \][/tex]
[tex]\[ 15 \times 15 = 225 \][/tex]
[tex]\[ 25 \times 13 = 325 \][/tex]
[tex]\[ 35 \times 10 = 350 \][/tex]
[tex]\[ 45 \times 7 = 315 \][/tex]
- Sum these values:
[tex]\[ 25 + 225 + 325 + 350 + 315 = 1240 \][/tex]
5. Calculate the mean traveling time:
- Divide the weighted sum of the midpoints by the total frequency:
[tex]\[ \text{Mean travelling time} = \frac{1240}{50} = 24.8 \][/tex]
Therefore, the estimate of the mean travelling time is [tex]\(24.8\)[/tex] minutes.
1. Determine the midpoint of each class interval:
- For the interval \(0 < t \leq 10\): midpoint \( = \frac{0 + 10}{2} = 5\)
- For the interval \(10 < t \leq 20\): midpoint \( = \frac{10 + 20}{2} = 15\)
- For the interval \(20 < t \leq 30\): midpoint \( = \frac{20 + 30}{2} = 25\)
- For the interval \(30 < t \leq 40\): midpoint \( = \frac{30 + 40}{2} = 35\)
- For the interval \(40 < t \leq 50\): midpoint \( = \frac{40 + 50}{2} = 45\)
2. List the frequencies:
- The frequencies are \(5, 15, 13, 10, \) and \(7\) corresponding to each class interval respectively.
3. Calculate the sum of the frequencies:
[tex]\[ \text{Total frequency} = 5 + 15 + 13 + 10 + 7 = 50 \][/tex]
4. Calculate the weighted sum of the midpoints:
- Multiply each midpoint by its respective frequency and sum up the results:
[tex]\[ (5 \times 5) + (15 \times 15) + (25 \times 13) + (35 \times 10) + (45 \times 7) \][/tex]
- Calculate each term:
[tex]\[ 5 \times 5 = 25 \][/tex]
[tex]\[ 15 \times 15 = 225 \][/tex]
[tex]\[ 25 \times 13 = 325 \][/tex]
[tex]\[ 35 \times 10 = 350 \][/tex]
[tex]\[ 45 \times 7 = 315 \][/tex]
- Sum these values:
[tex]\[ 25 + 225 + 325 + 350 + 315 = 1240 \][/tex]
5. Calculate the mean traveling time:
- Divide the weighted sum of the midpoints by the total frequency:
[tex]\[ \text{Mean travelling time} = \frac{1240}{50} = 24.8 \][/tex]
Therefore, the estimate of the mean travelling time is [tex]\(24.8\)[/tex] minutes.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.