Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's find the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\). The slope-intercept form of a line is given by \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
### Step 1: Calculate the Slope (\(m\))
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points \((-7, -5)\) and \((0, 1)\):
[tex]\[ x_1 = -7, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 0, \quad y_2 = 1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{1 - (-5)}{0 - (-7)} = \frac{1 + 5}{0 + 7} = \frac{6}{7} \][/tex]
So, the slope \(m\) is:
[tex]\[ m \approx 0.857 \][/tex]
### Step 2: Calculate the y-intercept (\(b\))
The y-intercept \(b\) can be found using the slope-intercept equation \(y = mx + b\). We can use any of the given points to find \(b\); let’s use the point \((0, 1)\).
Substitute \(x = 0\) and \(y = 1\) into the equation \(y = mx + b\):
[tex]\[ 1 = 0.857 \cdot 0 + b \][/tex]
Since \(0.857 \cdot 0 = 0\), we get:
[tex]\[ b = 1 \][/tex]
### Step 3: Write the Equation of the Line
Now we have found both the slope (\(m\)) and the y-intercept (\(b\)). Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = 0.857x + 1 \][/tex]
So, the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\) is:
[tex]\[ y = 0.857 \, x + 1 \][/tex]
This gives us a linear equation that accurately represents the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for the line passing through the given points.
### Step 1: Calculate the Slope (\(m\))
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points \((-7, -5)\) and \((0, 1)\):
[tex]\[ x_1 = -7, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 0, \quad y_2 = 1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{1 - (-5)}{0 - (-7)} = \frac{1 + 5}{0 + 7} = \frac{6}{7} \][/tex]
So, the slope \(m\) is:
[tex]\[ m \approx 0.857 \][/tex]
### Step 2: Calculate the y-intercept (\(b\))
The y-intercept \(b\) can be found using the slope-intercept equation \(y = mx + b\). We can use any of the given points to find \(b\); let’s use the point \((0, 1)\).
Substitute \(x = 0\) and \(y = 1\) into the equation \(y = mx + b\):
[tex]\[ 1 = 0.857 \cdot 0 + b \][/tex]
Since \(0.857 \cdot 0 = 0\), we get:
[tex]\[ b = 1 \][/tex]
### Step 3: Write the Equation of the Line
Now we have found both the slope (\(m\)) and the y-intercept (\(b\)). Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = 0.857x + 1 \][/tex]
So, the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\) is:
[tex]\[ y = 0.857 \, x + 1 \][/tex]
This gives us a linear equation that accurately represents the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for the line passing through the given points.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.