Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's find the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\). The slope-intercept form of a line is given by \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
### Step 1: Calculate the Slope (\(m\))
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points \((-7, -5)\) and \((0, 1)\):
[tex]\[ x_1 = -7, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 0, \quad y_2 = 1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{1 - (-5)}{0 - (-7)} = \frac{1 + 5}{0 + 7} = \frac{6}{7} \][/tex]
So, the slope \(m\) is:
[tex]\[ m \approx 0.857 \][/tex]
### Step 2: Calculate the y-intercept (\(b\))
The y-intercept \(b\) can be found using the slope-intercept equation \(y = mx + b\). We can use any of the given points to find \(b\); let’s use the point \((0, 1)\).
Substitute \(x = 0\) and \(y = 1\) into the equation \(y = mx + b\):
[tex]\[ 1 = 0.857 \cdot 0 + b \][/tex]
Since \(0.857 \cdot 0 = 0\), we get:
[tex]\[ b = 1 \][/tex]
### Step 3: Write the Equation of the Line
Now we have found both the slope (\(m\)) and the y-intercept (\(b\)). Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = 0.857x + 1 \][/tex]
So, the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\) is:
[tex]\[ y = 0.857 \, x + 1 \][/tex]
This gives us a linear equation that accurately represents the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for the line passing through the given points.
### Step 1: Calculate the Slope (\(m\))
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points \((-7, -5)\) and \((0, 1)\):
[tex]\[ x_1 = -7, \quad y_1 = -5 \][/tex]
[tex]\[ x_2 = 0, \quad y_2 = 1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{1 - (-5)}{0 - (-7)} = \frac{1 + 5}{0 + 7} = \frac{6}{7} \][/tex]
So, the slope \(m\) is:
[tex]\[ m \approx 0.857 \][/tex]
### Step 2: Calculate the y-intercept (\(b\))
The y-intercept \(b\) can be found using the slope-intercept equation \(y = mx + b\). We can use any of the given points to find \(b\); let’s use the point \((0, 1)\).
Substitute \(x = 0\) and \(y = 1\) into the equation \(y = mx + b\):
[tex]\[ 1 = 0.857 \cdot 0 + b \][/tex]
Since \(0.857 \cdot 0 = 0\), we get:
[tex]\[ b = 1 \][/tex]
### Step 3: Write the Equation of the Line
Now we have found both the slope (\(m\)) and the y-intercept (\(b\)). Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = 0.857x + 1 \][/tex]
So, the equation of the line that passes through the points \((-7, -5)\), \((0, 1)\), and \((7, 7)\) is:
[tex]\[ y = 0.857 \, x + 1 \][/tex]
This gives us a linear equation that accurately represents the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for the line passing through the given points.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.